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In this paper we study extensions between finite-dimensional 
simple modules over classical Lie superalgebras gl(m|n), 
osp(M |2n) and qm. We consider a simplified version of the 
extension graph which is produced from the Ext1-graph by 
identifying representations obtained by parity change and 
removal of the loops. We give a necessary condition for a 
pair of vertices to be connected and show that this condition 
is sufficient in most of the cases. This condition implies 
that the image of a finite-dimensional simple module under 
the Duflo-Serganova functor has indecomposable isotypical 
components. This yields semisimplicity of Duflo-Serganova 
functor for Fin(gl(m|n)) and for Fin(osp(M |2n)).

© 2023 Published by Elsevier Inc.

0. Introduction

Let C be a category of representations of a Lie superalgebra g and Irr(C) be the set of 
isomorphism classes of simple modules in C. Assume that the modules in C are of finite 
length.1 In many examples the extension graph of C is bipartite, i.e. there exists a map 
dex : Irr(C) → Z2 such that

E-mail address: maria.gorelik@weizmann.ac.il.

1 This can be replaced by existence of local composition series constructed in [5].
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(Dex1) Ext1C(L1, L2) = 0 if dex(L1) = dex(L2).

In what follows Fin(g) stands for the full subcategory of the category of finite-
dimensional g-modules consisting of the modules which are completely reducible over 
g0. In this paper we consider the following examples:

(KM) C = Fin(g) with g = gl(m|n), osp(M |2n), D(2|1, a), G(3) or F (4).
(q; 1

2 ) C = Fin(qm)1/2 which is the full subcategory of Fin(qm) consisting of the modules 
with “half-integral” weights;

(q; C) C is a subcategory of Fin(qm) described in 4.7.

Take g as in the (KM)-case. Let C(g) be the full subcategory of Fin(g) consisting of 
modules with all subquotients having the maximal atypicality (equal to the defect of g). 
The Kac-Wakimoto conjecture, which was formulated in [25] and proven in [32], states 
that for a simple finite-dimensional module L one has sdimL �= 0 if and only if L is of 
maximal atypicality (i.e., L ∈ Irr(C(g))). It turns out that (see [24], [15], [17] for the 
proofs) that there are exactly two possible maps dex : Irr(C(g)) → Z2 satisfying (Dex1): 
the map given by dex(L) := 0 if and only if sdimL > 0 and the map dex′ := 1 − dex. 
Note that the map dex is compatible with the Duflo-Serganova functors introduced in [7]
that is

(Dex2) one has [DSx(L) : L′] = 0 if dex(L) �= dex(L′),

since sdimN = sdim DSx(N) for any g-module N . Note that in (Dex2) we have to choose 
dex on Irr(C) and on Irr(DSx(C)).

By [24], [15] in the (KM)-case there exists dex satisfying (Dex1) and (Dex2). Another 
example when (Dex1) and (Dex2) hold is the full subcategory of integrable modules in 
the category O(gl(1|n)(1)), see [18]. Note that Fin(g) coincides with the full subcategory 
of integrable modules in the category O(g) if dim g < ∞. This suggests the following 
conjecture: if g is a Kac-Moody superalgebra, then the full subcategory of integrable 
modules in the category O(g) admits a map satisfying (Dex1) and (Dex2).

The original motivation for this project was to study complete reducibility of DSx(L), 
where L is a finite-dimensional simple g-module. Clearly, the existence of a map satisfying 
(Dex1) and (Dex2) implies complete reducibility of DSx(L) for each L ∈ Irr(C). In 
particular, DSx(L) is completely reducible for each simple finite-dimensional module L
over a finite-dimensional Kac-Moody superalgebra. Unexpectedly, it turns out that the 
complete reducibility holds in the cases (q; 12) and (q; C) even though (Dex2) does not 
hold. Below we will explain how the complete reducibility can be obtained in the absence 
of the property (Dex2).

Our main result is formulated in terms of “arc/arch diagrams” used in [24], [10], [22]

and in [17]; for qn-case a modification of these diagrams is used in [20].
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Theorem A. Let g = gl(m|n), osp(M |2n) or qm. If there exists a non-split extension 
between two non-isomorphic finite-dimensional simple modules, then the weight diagram 
of one of these modules can be obtained from the weight diagram of the other module by 
moving one or two symbols × along one of the arches. For g = gl(m|n), osp(M |2n) and 
for half-integral weights of qm this condition is sufficient.

The above condition is not sufficient for integral weights of qm, but it is sufficient if 
the modules are “large enough”, see Corollary 4.6.5.

Theorem A implies that dex, introduced by the formula (23) below, satisfies (Dex1) in 
all cases we consider. The computations of DSx(L) in [24], [15], [22] imply that the arch di-
agram corresponding to a subquotient of DSx(L) can be obtained from the arch diagram 
of L by sequential removal of several maximal arches. This, together with Theorem A, 
implies that any extension between non-isomorphic simple subquotients of DSx(L) splits. 
This gives the complete reducibility of DSx(L) in the cases (KM), (q; 12), (q; C) and the 
fact that in the qm-case any indecomposable submodule of DSx(L) is “isotypical” in the 
sense of 1.2.3.

The property (Dex1) means that dex gives a bipartition of a certain simplified version 
of Ext1-graph. This graph can be described in the following way. Denote by Π the parity 
change functor and by L(λ) a simple g-module of the highest weight λ; we set

extg(λ; ν)=
{

dim Ext1O(L(λ), L(ν)) if L(ν) ∼= ΠL(ν)
dim Ext1O(L(λ), L(ν)) + dim Ext1O(L(λ),ΠL(ν)) otherwise.

(1)

Let (C; ext) be the graph with the set of vertices Irr(C) modulo the involution defined 
by Π, with L(λ) and L(ν) connected by extg(λ; ν) edges if λ �= ν. This graph can 
be obtained from the usual Ext1-graph in two steps: factoring modulo the involution 
followed by deleting the loops. The graph obtained by factoring modulo the involution 
does not have loops if g is a Kac-Moody superalgebra and C ⊂ O(g); in the qm-case 
there is at most one loop around each vertex and the vertices with loops correspond to 
the weights having at least one zero coordinate, see Theorem 3.1 of [21]. The property 
(Dex1) means that dex gives a bipartition of the graph (C; ext).

In many cases Ext1-graph is isomorphic to two disjoint copies of (C; ext) which is 
equivalent to the following property: the vertices L and ΠL lie in the different connected 
component of the Ext1-graph. It is easy to see that this property holds if g is a Kac-
Moody superalgebra and C ⊂ O(g). For Fin(qm)1/2 this property follows from results 

of [1]. This property does not hold for the atypical integral blocks in Fin(qm).
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0.1. Remark

It was observed by Alex Sherman, our results imply the following: each block of 
atypicality k2 in Fin(g) contains a “large” Serre subcategory C+ (described in 4.5.4) 
such that the graph (C+; ext) is isomorphic to (C1/2(k); ext), where C1/2(k) is the half-
integral block of atypicality k in Fin(q2k). In order to illustrate this observation, consider 
the simplest case k = 1 which was studied in [12], [13], [26], [27] and [21]. We have the 
following three types of ext-graphs:

A∞
∞ : . . . • • • • • . . .

D∞ : • • • . . .

•

A∞ : • • • . . .

The first graph corresponds to the blocks of atypicality one in gl(m|n), osp(2m|2n)
and some blocks of atypicality one in F (4) and D(2|1; a) for a ∈ Q; the second graph 
corresponds to the blocks of atypicality one in osp(2m +1|2n), osp(2m|2n), G(3) and the 
rest of the blocks of atypicality one in F (4) and D(2|1; a). The third graph corresponds 
to the blocks of atypicality one for qm; this graph is contained in the first two graphs. 
The picture is much more complicated for k > 1. For instance, the vertices of the blocks 
of atypicality two in Fin(g) are enumerated by the integral pairs (i, j) satisfying the 
following conditions:

— i < j for gl(m|n)
— 0 < i < j or i = j = 0 for osp(2m + 1|2n), the integral blocks for qm and certain 

blocks for osp(2m|2n);
— |i| < j or i = j = 0 for the rest of the atypicality two blocks for osp(2m|2n);
— 0 < i < j for the half-integral blocks for qm.

The last graph is an induced subgraph3 of all above graphs except, perhaps, for the 
integral blocks for g = qm; for the latter case the last graph is isomorphic to the induced 
subgraph for the vertices (i, j) with 1 < i < j.

2 In contrast to the Kac-Moody case, the definition of the degree of atypicality in the qn-case admits 
several variations; for example, our degree of atypicality is the integral part of the degree appearing in [20].

3 the induced subgraph is the graph with the set of vertices B which includes all edges μ → ν for μ, ν ∈ B.
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0.2. Methods

For the cases (KM), (q; 12 ) the categories Fin(g) were studied in many papers includ-
ing [28], [3], [1], [4], [8], [9] and Theorem A can be deduced from the results of these 
papers. The categories Fin(q2), Fin(q3) were described in [27] and [21] respectively. In 
this paper we obtain Theorem A using the approach of [28], [21]. The assertion can be 
reduced to the case when g is one of the algebras gl(n|n), osp(2n + t|2n), q2n+� with 
t = 0, 1, 2 and � = 0, 1 and the simple modules have the same central character as the 
trivial module. We take g as above and denote by B the set of λs such that L(λ) is 
finite-dimensional and have the same central character as the trivial module. Our main 
tools are the functors Γg,p

• introduced in [29] (we use the “dual version” that appeared 
in [22]). For a parabolic subalgebra p ⊂ g the functor Γg,p

• : Fin(p) → Fin(g) is the 
derived functor of the functor which maps each finite-dimensional p-module to the max-
imal finite dimensional quotient of the induced module U(p) ⊗U(q) V . We fix a “nice 
chain” of Lie superalgebras g(0) ⊂ g(1) ⊂ . . . ⊂ g(n) where g(i) = gl(i|i) for g = gl(n|n), 
g(i) = osp(2i + t|2i), for g = osp(2n + t|2k) with t = 0, 1, 2 and g(i) = q2i+� for g = q2n+�

with � = 0, 1. For each s the algebra p(s) := (g(s−1) + b) ∩ g(s) is a parabolic subalgebra 
in g(s). For p := p(n) the multiplicities Ki(λ; ν) := [Γg,p

i (Lp(λ)) : Lg(ν)] were com-
puted in [28], [22], [30], [31]. We will present the corresponding Poincaré polynomials 
Kλ,ν(z) :=

∑
i K

i(λ; ν)zi in terms of the arch diagram. The same Poincaré polynomials 
appear in the character formulae obtained in [22], [4], [35] and [16] (in particular, the arch 
diagrams in qm-case are similar to the diagrams appeared in [35], 3.3). The multiplicities

Ki
(s)(λ; ν) := [Γg(s)+h,p(s)+h

i (Lp(s)+h(λ)) : Lg(ν)]

can be easily expressed in terms of Ki(λ; ν) computed for g(i). Set k0(λ; ν) :=
maxs K

0
(s)(λ; ν). It turns out that k0(λ; ν) �= 0 implies that the weight diagram of λ

can be obtained from the weight diagram of ν by moving one or two symbols × along 
one of the arches. For g = gl(n|n), osp(2n + t|2n) the inequality k0(λ; ν) �= 0 forces 
k0(λ; ν) = 1 and dex(λ) �= dex(ν) for the grading dex given by the formula (23). For 
g = qm-case the same hold if ν does not have zero coordinates.

It is not hard to show that extg(λ; ν) ≤ k0(λ; ν) for λ, ν ∈ B with ν < λ. This gives 
the first claim of Theorem A for the case when the highest weights of the modules lie 
in B. In Corollary 4.5.1 we show that extg(λ; ν) = k0(λ; ν) for λ, ν ∈ B with ν < λ

except for the case g = qm and λ has a coordinate which equals to 0 and to 1 + �. 
This gives the second claim of Theorem A for the case when the highest weights of the 
modules lie in B. The proof of the formula ext(λ; ν) = k0(λ; ν) is based on the fact that 
for each s the radical of the maximal finite dimensional quotient of the induced module 
U(p) ⊗U(q) Lp(s)(λ) is semisimple (the chain g(0) ⊂ g(1) ⊂ . . . ⊂ g(n) is chosen so that 

this property holds).
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0.3. Content of the paper

In Section 1 we present some background information about Ext1 and establish the 
inequality extg(λ; ν) ≤ k0(λ; ν). In Corollary 1.9.3 we obtain the formula extg(λ; ν) =
k0(λ; ν) under certain assumptions.

In Section 2 we introduce the language of “arch diagrams”.
In Section 3 we deduce a description of the Poincaré polynomials Kλ,ν(z) in terms of 

the arch diagram from results of [30], [31], [28] and [22].
In Section 4 we introduce the Z2-grading dex and show that Kλ,ν(z) has nice prop-

erties with respect to this grading. Then we compute extg(λ; ν) for λ, ν ∈ B under the 
assumption that for g = qm all coordinates of λ differ from 0, 1 and 1 + �. In 4.6 we 
establish Theorem A by reducing the computations of extg(λ; ν) for λ, ν ∈ P+(g) to the 
case λ, ν ∈ B. In 4.7 we discuss the conditions (Dex1), (Dex2) in various cases. Finally, 
in Remark 4.8 we discuss the connection between the ext-graph and Ext1-graph.

0.3.1.
This paper has a considerable overlap (the cases of gl and osp) with the unpublished 

preprint [14] where the (KM) case was studied.

0.4. Acknowledgments

The author was supported by ISF Grant 1957/21. The author is grateful to N. David-
son, V. Hinich, V. Serganova and A. Sherman for numerous helpful discussions and to 
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0.5. Index of definitions and notation

Throughout the paper the ground field is C; N stands for the set of non-negative 
integers. We denote by Π the parity change functor. We will use the notation SocN , 
RadN , coSocN for the socle, the radical and the cosocle of a module N (recall that SocN
is the sum of simple submodules, RadN is the intersection of maximal submodules and 
coSocN := N/RadN . Throughout the paper ≡ will be always used for the equivalence 
modulo 2.

g, t, (Asst) 1.2
O(g), Fin(g), Cλ,M(λ), L(λ), P+(g) 1.2.2
[N : L] 1.2.3
N (λ; ν;m), m(g, p;λ; ν) 1.3.3
Γg,p
i , Kj(λ; ν) 1.7.1

g(s), p(s), h(s), t(s), h⊥(s), t⊥(s) 1.8
assumptions (A), (B) 1.8.1

Ki

(s)(λ; ν), ext(s)(λ; ν) 1.8.2
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s(λ; ν), k(λ; ν), graph G(t∗;K0), B(λ), Ki-stable 1.9
triangular decompositions, ρ 2.1
B0,B1/2, B, λi 2.2
arch diagram 2.3
g(i) for g = gl(n|n), osp(2n + t|2n), q2n+�; tailλ 2.5
(g)qp, (g)p,q0,0 , K( fg ) 3.1
dex(λ), dex(λ; ν), tail(λ; ν) (23)

1. Useful facts about ext(λ; ν)

1.1.

Lemma. Let A be an associative superalgebra.

(i) If N is an A-module with a semisimple radical and a simple cosocle L′, then

dim Hom(L,N) ≤ dim Ext1(L′, L),

for any simple A-module L � L′.
(ii) Let L1, . . . , Ls, L′ be simple non-isomorphic A-modules and m1, . . . , ms be non-

negative integers satisfying mj ≤ dim Ext1(L′, Lj). There exists an A-module N
with

coSocN ∼= L′, RadN ∼= ⊕jL
⊕mj

j .

Proof. Consider any exact sequence of the form

0 → L⊕m ι−→ N ′ φ−→ L′ → 0.

For each i = 1, . . . , m let pi : L⊕m → L be the projection to the ith component and 
let θi : L → L⊕m be the corresponding embedding piθi = IdL. Consider a commutative 
diagram

0 L⊕m ι

pi

N ′ φ

ψi

L′

Id

0

0 L

θi

ιi
M i

φi

L′ 0

(2)

where ψi : N ′ → M i is a surjective map with Kerψi = ι(Ker pi). The bottom line of this 
diagram is an element of Ext1(L′, L), which we denote by Φi.

Assume that m > dim Ext1(L′, L). Then {Φi}mi=1 are linearly dependent and we can 

assume that Φ1 = 0. This means that Φ1 splits, so there exists a projection p̃ : M1 → L
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with ι1p̃ = IdL. Then p̃ ◦ ψ1 ◦ ι ◦ θ1 = IdL, so p̃ ◦ ψ1 : N ′ → L is surjective. Therefore 
[coSocN ′ : L] �= 0, that is coSocN ′ � L′.

Now take N as in (i). Let N ′ be the quotient of N by the sum of all simple submodules 
which are not isomorphic to L. One has

coSocN ′ = coSocN ∼= L′, RadN ′ ∼= L⊕m

where m = dim Hom(L, N). By above, m ≤ dim Ext1(L′, L); this gives (i).
For (ii) let {Φ(j)

i }mj

i=1 be linearly independent elements in Ext1(L′, Lj):

Φ(j)
i : 0 → Lj

ιi−→ M i φi−→ L′ → 0.

Consider the exact sequence

0 → ⊕jL
⊕mj −→ ⊕j ⊕i Mi → (L′)⊕

∑s
j=1 mj → 0.

Let diag(L′) be the diagonal copy of L′ in (L′)⊕
∑s

j=1 mj and let N be the preimage of 
diag(L′) in ⊕j ⊕i M

i. This gives the exact sequence

0 → ⊕jL
⊕mj

ι−→ N
φ−→ L′ → 0

and the commutative diagrams similar to (2). Assume that N1 � N is a submodule of 
N satisfying φ(N1) �= 0. Since Kerφ = Im ι is completely reducible we have

Kerφ = (Kerφ ∩N1) ⊕N2

where N2 �= 0 is completely reducible. Then N = N1 ⊕N2 and thus N can be written as 
N = L ⊕N3 where L ⊂ N2 is simple. We can assume that L ∼= L1. Changing the basis 
in the span of {Φ(1)

i }mj

i=1, we can assume that ι(Ker p1) ⊂ N3. Since Kerψ1 = ι(Ker p1), 
ψ1(L) is a non-zero submodule of M1, so the exact sequence Φ1 splits, a contradiction.

Hence for each N1 � N one has φ(N1) = 0 that is RadN = Kerφ as required. �
1.2. Notation and assumptions

Let g be a Lie superalgebra of at most countable dimension with a finite-dimensional 
even subalgebra t satisfying

(Asst) t acts diagonally on g and gt0 = t.
We set h := ht and choose h ∈ t satisfying

gh = h and each non-zero eigenvalue of adh has a non-zero real part. (3)

(The assumption on dim g ensures the existence of h). We write g = h ⊕ (⊕α∈Δ(g)gα)

with Δ(g) ⊂ t∗ and
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gα := {g ∈ g| [h, g] = α(h)g for all h ∈ t}.

We introduce the triangular decomposition Δ(g) = Δ+(g) 
∐

Δ−(g), with

Δ±(g) := {α ∈ Δ(g)| ±Reα(h) > 0},

and define the partial order on t∗ by

λ > ν if ν − λ ∈ NΔ−.

We set n± := ⊕α∈Δ±gα and consider the Borel subalgebra b := h ⊕ n+.

1.2.1.
Take z ∈ t satisfying

α(z) ∈ R≥0 for α ∈ Δ+ and α(z) ∈ R≤0 for α ∈ Δ−. (4)

Consider the superalgebra p(z) := gz + b. Notice that

p(z) = gz � m, where m(z) :=
∑

α∈Δ:α(z)>0

gα.

Both triples (p(z), t, h), (gz, t, h) satisfy (Asst) and (3). One has (gz)t = pt = h and

Δ+(p(z)) = Δ+(g), Δ+(gz) = {α ∈ Δ+(g)| α(z) = 0}
Δ−(p(z)) = Δ−(gz) = {α ∈ Δ−(g)| α(z) = 0}

1.2.2. Modules M(λ), L(λ)
For a semisimple t-module N we denote by Nν the weight space of the weight ν. 

We denote by O(g) the full subcategory of finitely generated modules with a diagonal 
action of t and locally nilpotent action of n. Recall that Fin(g) is the full subcategory of 
the category of finite-dimensional g-modules consisting of modules which are completely 
reducible over g0. Since g0 is reductive, complete reducibility of a finite-dimensional g0-
module is equivalent to complete reducibility of h-action. Therefore Fin(g) is the full 
subcategory of the finite-dimensional g-modules in O(g).

By Dixmier generalization of Schur’s Lemma (see [6]), up to a parity change, the 
simple h-modules are parametrized by λ ∈ t∗; we denote by Cλ a simple h-module, 
where t acts by λ (for each λ we choose a grading on Cλ). We view Cλ as a b-module 
with the zero action of n and set

M(λ) := Indg

b
Cλ.
The module M(λ) has a unique simple quotient which we denote by L(λ). We set
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P+(g) := {λ ∈ t∗| dimL(λ) < ∞}.

We introduce similarly the modules Mp(λ), Lp(λ) for the algebra p.

1.2.3.
For N ∈ O(g) we will denote by [N : L] the number of simple quotients isomorphic 

to L or to ΠL in a Jordan-Hölder series of N . We say that N is an “L-isotypical” if all 
these quotients are isomorphic to L or to ΠL. We introduce extg(λ; ν) by (1); we will 
usually drop the index g and write simply ext(λ; ν).

1.3. Remarks

By Lemma 1.1 Ext1O(L(λ), L(ν)) = Ext1(L(λ), L(ν)) if λ �= ν.

1.3.1.
If g is a Kac-Moody superalgebra, then {Cλ}λ∈t∗ can be chosen in such a way that 

Ext1O(L(λ), ΠL(ν)) = 0 for all λ, ν and thus ext(λ; ν) = dim Ext1O(L(λ), L(ν)).
If g = qn, then ext(λ; ν) �= 0 implies that both Cλ, Cν are either Π-invariant or not 

Π-invariant; in this case for λ �= ν one has ext(λ; ν) = dim Ext1O(LΠ(λ), LΠ(ν)), where 
LΠ(λ) is the “Π-invariant simple module” appeared in [30], [31] (in other words, LΠ(λ)
is a simple q1 × qn-module).

1.3.2.
If g is a Kac-Moody superalgebra, then g admits antiautomorphism which stabilizes 

the elements of t and the category O(g) admits a duality functor # with the property 
L# ∼= L for each simple module L ∈ O(g). By [11], for the qn-case O(g) admits a duality 
functor # with the property L# ∼= L up to a parity change. In both cases

ext(λ; ν) = ext(ν;λ). (5)

1.3.3. Set N (λ; ν; m)
Recall that h ∈ t satisfies (3). Let λ �= ν ∈ t∗ be such that Re(λ − ν)(h) ≥ 0. If

0 → L(ν) → E → L(λ) → 0

is a non-split exact sequence, then E is generated by Eλ
∼= Cλ, so E is a quotient of 

M(λ) and ν < λ. For λ, ν ∈ t∗ we denote by N (λ; ν; m) the set of g-modules N satisfying

coSocN ∼= L(λ); SocN = RadN is L(ν)-isotypical and [N : L(ν)] = m. (6)

By Lemma 1.1 one has ext(λ; ν) = max{m| N (λ; ν; m) �= ∅}. Note that each module 
N ∈ N (λ; ν; m) is a quotient of M(λ) = Indg

b
Lb(λ). We set
m(g; p;λ; ν) := max{m| ∃N ∈ N (λ; ν;m) which is a quotient of Indg
p Lp(λ)}. (7)
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1.3.4.

Corollary. Take h ∈ t satisfying (3) and λ �= ν ∈ t∗ with Re(λ − ν)(h) ≥ 0. One has

ext(λ; ν) = m(g; b;λ; ν) ≤ dimM(λ)ν .

In particular, ext(λ; ν) �= 0 implies λ > ν.

1.4. Modules over g × h′′

Let h′′ be a finite-dimensional Lie superalgebra satisfying [h′′0 , h
′′] = 0. Set

t′′ := h′′0 , g′ = g× h′′, h′ := h× h′′, t′ = t× t′′, p′ := p× h′′.

Note that the triple (g′, h′, h) satisfy the assumption (Asst) and (3). For λ ∈ t∗ and 
η ∈ (t′′)∗ denote by λ ⊕ η the corresponding element in (t′)∗. Let Cλ, Cη, Cλ⊕η be the 
corresponding h, h′′ and h′-modules.

1.4.1.
By [19], we can choose the grading on Cλ⊕η is such a way that

Cλ � Cη
∼=

{
Cλ⊕η ⊕ ΠCλ⊕η if Cλ and Cη are Π-invariant
Cλ⊕η otherwise.

Moreover if Cη is not Π-invariant, then Cλ⊕η is Π-invariant if and only if Cλ is Π-
invariant. The similar statements hold for Mp(λ ⊕ η) and for Lp(λ ⊕ η).

1.4.2.
If h′ = t′, then Cλ, Cν , Cη are one-dimensional and

dim Ext1O(Lg(λ), Lg(ν)) = dim Ext1O(Lg′(λ⊕ η), Lg′(ν ⊕ η)).

By 1.4.1 the same formula holds if λ > ν and Cη is not Π-invariant (or if λ > ν and 
both Cν , Cλ are not Π-invariant). If g = qn, then ext(λ; ν) �= 0 implies that both Cλ, Cν

are either Π-invariant or not Π-invariant and the following corollary gives ext(λ; ν) =
ext(λ ⊕ η; ν ⊕ η).

1.4.3.

Corollary.

(i) ext(λ ⊕ η; ν ⊕ η′) �= 0 implies η′ = η and ext(λ; ν) �= 0.

(ii) Take λ > ν. If at least one of the following conditions holds
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— Cη is not Π-invariant
— Cν and Cλ are not Π-invariant
— Cν and Cλ are Π-invariant
then the map N �→ N � Cη induces a bijection between the sets N (λ; ν; m) and 
N (λ ⊕ η; ν ⊕ η; m). One has m(g; p; λ; ν) = m(g′; p′; λ ⊕ η; ν ⊕ η) and

ext(λ; ν) = ext(λ⊕ η; ν ⊕ η).

Proof. Observe that if η′ �= η, then the weight λ ⊕ η − ν ⊕ η′ does not lie in ZΔ(g′). 
Combining this observation with Corollary 1.3.4 we obtain ext(λ ⊕η; ν⊕η′) = 0 if η �= η′. 
Other assertions follow from 1.4.1. �
1.5.

The following lemma is a slight reformulation of Lemma 6.3 in [28].

Lemma. Take λ, ν ∈ t∗ with λ > ν.
(i) m(g; b; λ; ν) ≤ m(p; b; λ; ν) if ν − λ ∈ NΔ−(p);
(ii) m(g; b; λ; ν) = m(g; p; λ; ν) if ν − λ /∈ NΔ−(p).

Proof. For a semisimple t-module N we denote by Ω(N) the set of weights of N . For 
each g-module M we set

Pλ(M) := {v ∈ M | zv = λ(z)v}.

This defines an exact functor from g − Mod to gz − Mod. Recall that p = gz � m

(see 1.2.1). Viewing Pλ(M) as a p-module with the zero action of m we obtain an exact 
functor Pλ : g −Mod → p −Mod. By the PBW Theorem

Pλ(M(μ)) =
{

Mp(μ) if μ(z) = λ(z)
0 if (λ− μ)(z) > 0

Let us show that

Pλ(L(μ)) =
{

Lp(μ) if μ(z) = λ(z)
0 if (λ− μ)(z) > 0.

(8)

Indeed, since Pλ is exact, Pλ(L(μ)) is a quotient of Pλ(M(μ)); this gives the second 
formula. For the first formula assume that μ(z) = λ(z) and that E is a proper submodule 
of Pλ(L(μ)). Since Pλ(L(μ)) is a quotient of Pλ(M(μ)) and
(Pλ(M(μ)))μ = (Mp(μ))μ = Cμ
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is a simple h-module, one has γ < μ for each γ ∈ Ω(E). Since E is a p-module and 
g = n− + p, we have U(g)E = U(n−)E. Therefore (U(n−)E)μ = 0, so U(g)E is a proper 
g-submodule of L(μ). Hence E = 0, so Pλ(L(μ)) is simple. This establishes (8).

Fix N ∈ N (λ; ν; m) where m := m(g; b; λ; ν).
For (i) consider the case when ν − λ ∈ NΔ−(p). Then λ(z) = ν(z), so (8) gives

Pλ(L(ν)) = Lp(ν), Pλ(L(ν)) = Lp(λ).

Since Pλ is exact, Pλ(N) is a quotient of Mp(λ). Using (8) we conclude that the p-module 
Pλ(N) lies in the set N (λ; ν; m) (defined for p instead of g). Therefore m ≤ m(p; b; λ; ν). 
This establishes (i).

For (ii) assume that ν−λ /∈ NΔ−(p). Let us show that N is a quotient of Indg
p Lp(λ). 

Write

Indg
p Lp(λ) = M(λ)/J, Lp(λ) = Mp(λ)/J ′

where J (resp., J ′) is the corresponding submodule of M(λ) (resp., of Mp(λ)). Since 
Indg

p is exact and Indg
p Mp(λ) = M(λ) one has J ∼= Indg

p J
′; in particular, each maximal 

element in Ω(J) lies in Ω(J ′). Note that

Ω(J ′) ⊂ λ + NΔ−(p).

Let φ : M(λ) � N be the canonical surjection. Since Jλ = 0, φ(J) is a proper 
submodule of N , so φ(J) is a submodule of Soc(N) = L(ν)⊕m.

If φ(J) �= 0, then ν is a maximal element in Ω(J) and so ν ∈ λ + NΔ−(p) which 
contradicts to ν − λ /∈ NΔ−(p). Therefore φ(J) = 0, so φ induces a map

Indg
p Lp(λ) = M(λ)/J � N.

Hence N is a quotient of Indg
p Lp(λ) which gives m ≤ m(g; p; λ; ν). Since Indg

p Lp(λ) is a 
quotient of M(λ), we have m(g; b; λ; ν) ≥ m(g; p; λ; ν). Thus m(g; b; λ; ν) = m(g; p; λ; ν)
as required. �
1.6.

Take z1, . . . , zk−1 ∈ t satisfying (4) and the condition gzi ⊂ gzi+1 . Setting g(i) := gzi

we obtain the chain

h =: g(0) ⊂ g(1) ⊂ g(2) ⊂ . . . ⊂ g(k) := g. (9)

We introduce p̃(i) := g(i) + b and p(i) := p̃(i−1) ∩ g(i) with p̃(0) = p(0) := b; note that p(i)
(resp., p̃(i)) is a parabolic subalgebra in g(i) (resp., in g).
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1.6.1.
Taking z0 := h as in (3) and zk := 0 we obtain for s = 1, . . . , k

p̃(s−1) =
∑

α: α(zs−1)≥0

gα ⊂ p̃(s) =
∑

α: α(zs)≥0

gα,

p(s) =
∑

α: α(zs−1)≥0
α(zs)=0

gα.

In particular, p̃(s) = g(s) � m̃(s) and p(s) = g(s−1) � m(s) where

m̃(s) :=
∑

α:α(zs)>0

gα, m(s) :=
∑

α: α(zs−1)>0
α(zs)=0

gα.

One has m̃(i+1) ⊂ m̃(i) (since g(i) ∩ n can be identified with n/m̃(i)).

1.6.2.

Corollary. For λ > ν one has

ext(λ; ν) ≤ m(g(s); p(s);λ; ν) = extg(s)(λ; ν)

where s is minimal such that ν − λ ∈ NΔ−(g(s)).

Proof. Combining Corollary 1.3.4 and Lemma 1.5 we obtain

ext(λ; ν) = m(g; b;λ; ν) ≤ m(p̃(s); p̃(s−1);λ; ν).

The p̃(s)-module N := Indp̃
(s)

p̃(s−1) Lp̃(s−1)(λ) is generated by its highest weight space Nλ.
Since m̃(s) ⊂ n is an ideal of p(s), N m̃

(s) is a submodule of N , which implies m̃(s)N = 0. 
Hence N is a module over p̃(s)/m̃(s) = g(s). This gives

m(p̃(s); p̃(s−1);λ; ν) = m(g(s); p̃(s−1)/m̃(s);λ; ν).

Using the formulae from 1.6.1 we see that p(s) is the image of p̃(s−1) in p̃(s)/m̃(s) = g(s). 
Therefore m(g(s); ̃p(s−1)/m(s); λ; ν) = m(g(s); p(s); λ; ν) and thus

ext(λ; ν) ≤ m(g(s); p(s);λ; ν). (10)

Clearly, m(g(s); p(s); λ; ν) ≤ extg(s)(λ; ν). Using (10) for g(s) we obtain

extg(s)(λ; ν) ≤ m(g(s); p(s);λ; ν).
Thus extg(s)(λ; ν) = m(g(s); p(s); λ; ν). Now (10) gives the required formula. �
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1.7. Functors Γg,p
•

For a parabolic subalgebra p ⊂ g and a finite-dimensional p-module V we denote by 
Γg,p(V ) a maximal finite-dimensional quotient of Indg

p(V ). It is easy to see that this 
quotient is unique and that for any finite-dimensional quotient N of Indg

p(V ) there exists 
an epimorphism Γg,p(V ) � N .

1.7.1.
In [29], I. Penkov introduced important functors from Fin(p) to Fin(g). We will use a 

modification of these functors which appeared in [22] and other papers. These functors 
Γ• = {Γi}∞0 have the following properties

— Γg,p
0 (V ) = Γg,p(V );

— Each short exact sequence of p-modules

0 → U → V → U ′ → 0

induces a long exact sequence

. . . → Γg,p
1 (V ) → Γg,p

1 (U ′) → Γg,p
0 (U) → Γg,p

0 (V ) → Γg,p
0 (U ′) → 0.

Until the end of this section we assume the existence of Γ• satisfying the above 
properties. Observe that [Γg,p

0 (Lp(λ)) : Lg(λ)] = 1 if λ /∈ P+(g): we set

Kj(λ; ν) := [Γg,p
j (Lp(λ)) : Lg(ν)] − δ0jδλν .

Observe that Γg,p(Lp(λ)) = 0 if λ /∈ P+(g); for λ ∈ P+(g) one has

coSoc Γg,p(Lp(λ)) = Lg(λ) K0(λ;μ) = [Rad(Γg,p(Lp(λ))) : Lg(μ)]. (11)

In particular, K0(λ; ν) �= 0 implies ν < λ.

1.7.2.

Lemma. Let λ, ν ∈ P+(g) with ν < λ be such that

∀μ �= ν K0(λ;μ) �= 0 =⇒ ext(μ; ν) = 0 .

If K0(λ; ν) = 1 or ext(ν; ν) = 0, then K0(λ; ν) ≤ ext(λ; ν).

Proof. By (11) in both cases the isotypical component of Lg(ν) is a direct summand of 

Rad Γg,p(Lp(λ)), so Lemma 1.1 (i) gives the required inequality. �
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1.7.3.
Retain notation of 1.2.1 and recall that p = gz � m.

Lemma. Let λ, ν ∈ P+(g) with ν < λ be such that

(a) K1(λ; ν) = 0
(b) ∀μ K0(λ;μ) �= 0 =⇒ ext(ν;μ) = 0.

Then extgz(λ; ν) ≤ ext(λ; ν).

Proof. Without loss of generality we will assume that m := extgz(λ; ν) > 0. 
By Lemma 1.1 there exists an indecomposable gz-module N1 with a short exact se-
quence

0 → Lgz (ν)⊕m → N1 → Lgz(λ) → 0

where Lgz(ν)⊕m stands for the direct sum of m0 copies of Lgz(ν) and m1 copies of 
ΠLgz (ν) with m0 + m1 = m. Since p = gz � m, the corresponding p-module N2 :=
Resg

z

p N1 is an indecomposable module with a short exact sequence

0 → Lp(ν)⊕m → N2 → Lp(λ) → 0.

Consider the corresponding long exact sequence of g-modules

. . . → Γg,p
1 (Lp(λ))⊕m φ→ Γg,p

0 (Lp(ν))⊕m → Γg,p
0 (N2) → Γg,p

0 (Lp(λ)) → 0.

Recall that coSoc Γg,p
0 (Lp(ν)) = Lg(ν). Since K1(λ; ν) = 0 the image of φ lies in 

Rad Γg,p
0 (Lp(ν))⊕m. Thus Γg,p

0 (N2) has a quotient N3 with the short exact sequence

0 → Lg(ν)⊕m → N3 → Γg,p
0 (Lp(λ)) → 0. (12)

Since N2 is indecomposable, it is generated by its λ-weight space (N2)λ. Since N3 is a 
quotient of Γg,p

0 (N2) which is a quotient of Indg
p(N2), N3 is also generated by its λ-weight 

space. Hence N3 is indecomposable and

coSoc(N3) ∼= Lg(λ) ∼= coSoc
(
Γg,p

0 (Lp(λ))
)
.

The short exact sequence (12) induces a short exact sequence

0 → Lg(ν)⊕m → Rad(N3) → M → 0,

where M := Rad
(
Γg,p

0 (Lp(λ))
)
. This sequence splits since, the assumption (b) gives 

ext(ν; μ) = 0 if Lg(μ) is a subquotient of M . Hence M is a submodule of N3, which gives 

the following short exact sequence
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0 → Lg(ν)⊕m → N3/M → Lg(λ) → 0.

By above, N3/M is generated by its λ-weight space, so N3/M is indecomposable. 
Lemma 1.1 (i) gives ext(λ; ν) ≥ m as required. �
1.8.

Retain notation and assumption of 1.6. In all formulae where (s) appears, s is assumed 
to be one of the numbers 1, . . . , k. For each s we fix a decomposition gzs = g(s) × h⊥(s) in 

such a way that h⊥(s) ⊂ h and

g(0) ⊂ g(1) ⊂ . . . ⊂ g(k).

We set h(s) := g(s) ∩ h, t(s) := g(s) ∩ t, t⊥(s) := h⊥(s) ∩ t and p(s) := (g(s−1) + b) ∩ g(s). Note 
that p(s) is s a parabolic subalgebra in g(s); one has

gzs = g(s) + h, h = h(s) × h⊥(s), p(s) = p(s) × h⊥(s), p(s) = p(s) ∩ g(s).

In the notation of 1.4 we have P+(gzs) = P+(g(s)) ⊕ (t⊥(s))∗. Observe that

t∗ = P+(gz0) ⊃ P+(gz1) ⊃ P+(gz2) ⊃ . . . ⊃ P+(gzk) = P+(g).

1.8.1.
We assume that for each s one has

(A) for any λ′, ν′ ∈ P+(g(s)) with extg(s)(λ′, ν′) �= 0 the simple h(s)-modules Cλ′ , Cν′

are either Π-invariant or not Π-invariant simultaneously;
(B) there exists Γg(s),p(s)

• : Fin(p(s)) → Fin(g(s)) satisfying the conditions 1.7.1.

Observe that (A) holds if h1 = 0 (that is h = t); in addition (A) holds if g(s) ∼= qm

(this follows from the description of the center of U(qm)) obtained in [34]).

1.8.2.
Take λ, ν ∈ t∗ and set λ′ := λ|t(s) , ν′ := ν|t(s) . We introduce

Kj
(s)(λ; ν) :=

⎧⎪⎨
⎪⎩

0 if λ /∈ P+(g(s))
0 if λ|t⊥(s) �= ν|t⊥(s)
[Γg(s),p(s)

j (Lp(s)(λ′)) : Lg(s)(ν′)] if λ|t⊥(s) = ν|t⊥(s) .
(13)

Note that
K0
(s)(λ; ν) �= 0 =⇒ ν ∈ λ + NΔ−(g(s)), ν|t(s) ∈ P+(g(s)). (14)
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We set

ext(s)(λ; ν) := extgzs (λ; ν).

Combining the assumption (A) and Corollary 1.4.3 we get for ν < λ

ext(s)(λ; ν) =
{

0 if λ|t⊥(s) �= ν|t⊥(s)
extg(s)(λ′; ν′) if λ|t⊥(s) = ν|t⊥(s)

(15)

Note that m(g(s); p(s); λ; ν) ≤ K0
(s)(λ; ν).

1.9. Graph G(t∗; K0)

For λ, ν ∈ t∗ we introduce

s(λ; ν) := max{s| λ|t⊥(s) = ν|t⊥(s)}, k0(λ; ν) := K0
(s(λ;ν))(λ; ν),

Note that s(λ; ν) = min{s| ν − λ ∈ NΔ−(gzs)} if ν < λ. Corollary 1.6.2 gives

ext(λ; ν) ≤ ext(s(λ;ν))(λ; ν) ≤ k0(λ; ν) for each λ, ν ∈ P+(g) with ν < λ. (16)

1.9.1. Definitions
We say that (λ; ν) is Ki-stable if Ki

(s)(λ; ν) �= 0 for each s > s(λ; ν).
Let G(t∗; K0) be the graph with the set of vertices t∗ connected by k0(λ; ν)-edges of 

the form ν → λ.
For each B ⊂ t∗ we denote by G(B, K0) the induced subgraph of G(t∗; K0). We say 

that a graph G(B, K0) is bipartite if there exists dex : B → Z2 such that ν → λ implies 
dex(ν) �= dex(λ). For each λ ∈ t∗ let B(λ) be the set consisting of λ and all its direct 
predecessor in G(t∗; K0), i.e.

B(λ) := {λ} ∪ {ν| k0(λ; ν) �= 0}.

1.9.2. Remarks
Observe that G(t∗; K0) is a directed graph without cycles (for any edge μ → ν one 

has μ < ν). For g �= gl(n|n) one has B(0) = {0} since 0 is a minimal weight in P+(g(i))
for each i.

Note that if G(B(λ); K0) is bipartite and ext(ν; ν) = 0 for each ν ∈ B(λ), then the 
radical of Γg,pLp(λ) is semisimple.

1.9.3.
Corollary. Let λ ∈ P+(g) be such that
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(a) B(λ) ⊂ P+(g) and G(B(λ); K0) is bipartite;
(b) ext(s)(μ; ν) = 0 ⇐⇒ ext(s)(ν; μ) = 0 for all s and μ, ν ∈ B(λ) \ {λ}.

(i) If ν ∈ P+(g) with ν < λ satisfies
(c) (λ; ν) is K1-stable;
(d) (λ; ν) is K0-stable or ext(s)(ν; ν) = 0 for each s,
then ext(λ; ν) = ext(s0(λ;ν))(λ; ν).

(ii) If λ, ν satisfy (a)–(d) and
(e) k0(λ; ν) = 1 or ext(s(λ;ν))(ν; ν) = 0,
then ext(λ; ν) = k0(λ; ν).

Proof. If ν /∈ B(λ), then (16) gives ext(λ; ν) = k0(λ; ν) = 0. Assume that ν ∈ B(λ). Set

p := s0(λ; ν).

Combining (15), (16) we obtain extgzs (μ2; μ1) ≤ k0(μ2; μ1) for μ1, μ2 ∈ P+(g) if μ2 > μ1. 
Then the assumptions (a), (b) give

ext(s)(μ1;μ2) = 0 for all μ1 �= μ2 ∈ B(λ) \ {λ} and each s. (17)

Take s > p and view λ, ν as elements of P+(gzs). We will use Lemma 1.7.3 for the pair 
p(s) ⊂ gzs . Let us check the assumptions of this lemma: the assumption (a) follows from 
(c) and the assumption (b) follows from (17) for μ �= ν (since ν ∈ B(λ)); the assumption 
(b) for μ = ν means that K0

(s)(λ; ν) = 0 implies ext(s)(ν; ν) = 0— this follows from (d). 
Lemma 1.7.3 gives ext(s)(λ; ν) ≤ ext(s+1)(λ; ν). Using (16) we get

ext(λ; ν) ≤ ext(p)(λ; ν) ≤ ext(n)(λ; ν) = ext(λ; ν).

This proves (i). For (ii) note that (17) and (e) imply the assumptions of Lemma 1.7.2
for gzp which gives K0

p(λ; ν) ≤ ext(p)(λ; ν). By (i) this can be rewritten as k0(λ; ν) ≤
ext(λ; ν). Now (16) gives k0(λ; ν) = ext(λ; ν) as required. �
1.9.4. Remark

If λ satisfies (a), (b) and the assumption (e) holds for each ν ∈ B(λ), then Γg,pLp(λ)
has a semisimple radical.

1.9.5. Remark
In the examples considered below each pair (λ; ν) with λ �= ν is Ki-stable for any i (in 

fact Ki
(s)(λ; ν) �= 0 implies Ki′

(s′)(λ; ν) �= 0 for each s′ �= s and any i′). In most of the cases 
G(B(λ); K0) is bipartite (this simply means that k0(μ1; μ2) = 0 for μ1, μ2 ∈ B(λ) \{λ}); 

moreover, Ki

(s)(λ; ν) �= 0 implies dex(ν) ≡ dex(λ) + i modulo 2.
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2. Weight diagrams and arch diagrams

In this section we introduce the language of “arch diagrams” which will be used in 
Section 3. We will consider the following examples

— the principal block over g = gl(n|n), osp(2n + t|2n) for t = 0, 1, 2;
— the principal block over q2n+� for � = 0, 1;
— the “half-integral” block of maximal atypicality over q2n.

We set � := dim t − 2n, i.e., � = 1 for osp(2n + 2|2n), q2n+1 and � = 0 in other cases.

2.1. Triangular decompositions

We fix the following bases of simple roots

Σ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε1 − ε2, . . . , εn − δ1, δ1 − δ2, . . . , δn−1 − δn for gl(n|n)
ε1 − δ1, δ1 − ε2, . . . , εn − δn, δn for osp(2n + 1|2n)
δ1 − ε1, ε1 − δ2, . . . , εn−1 − δn, δn ± εn for osp(2n|2n)
ε1 − δ1, δ1 − ε2, . . . , εn − δn, δn ± εn+1 for osp(2n + 2|2n).
ε1 − ε2, . . . , ε2n+�−1 − ε2n+� for q2n+�

and take the following Weyl vector

ρ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

(n− i)(εi − δn+1−i) for gl(n|n)

0 for osp(2n|2n), osp(2n + 2|2n), q2n+�

1
2

n∑
i=1

(δi − εi) for osp(2n + 1|2n).

2.2. Weight diagrams

We denote by B0 the set of the highest weights for simple modules lying in the principal 
block of Fin(g); for q2n we denote by B1/2 the set of the highest weights for simple 
modules lying in the half-integral block of maximal atypicality. In what follows B will 
denote B0 or B1/2. These sets can be described as follows.

• For gl(n|n) the set B0 consists of λs such that λ +ρ =
n∑

i=1
λi(εi−δi), where λ1, . . . , λn
are integers with λi+1 < λi.
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• For osp(2n + t|2n) the set B0 consists of λs such that

λ + ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
i=1

λi(εi + δi) + λn(δn + ξεn) for t = 0
n∑

i=1
λi(εi + δi) for t = 2

s−1∑
i=1

(λi + 1
2)(εi + δi) + 1

2(δs + ξεs) +
n∑

i=s+1

1
2(δi − εi) for t = 1

where ξ ∈ {±1} and λ1, . . . , λn ∈ N with λi+1 < λi or λi = λi+1 = 0. For t = 1 we 
have 1 ≤ s ≤ n + 1 and we set λs := λs+1 := . . . = λn = 0 if s ≤ n (for s = n + 1 we 
have λ + ρ =

∑n
i=1(λi + 1

2 )(εi + δi)).
• For q2n+� the set B0 consists of λs such that

λ + ρ =
n∑

i=1
λi(εi − ε2n+�+1−i),

where λ1, . . . , λn ∈ N with λi+1 < λi or λi+1 = λi = 0.
• For q2n the set B1/2 consists of λs such that

λ + ρ =
n∑

i=1
λi(εi − ε2n+1−i),

where λ1, . . . , λn ∈ N + 1/2 and λi+1 < λi.

2.2.1.
We assign to λ as above a “weight diagram”: for B0 (resp., B1/2) the weight diagram 

is a number line with one or several symbols drawn at each position with integral (resp., 
half-integral) coordinate:

— we put the sign × at each position with the coordinate λi;
— if � = 1 we add > at the zero position;
— we add the “empty symbol” ◦ to all empty positions;
— for osp(2n|2n) with λk �= 0 and for osp(2n + 1|2n) with s ≤ k, we write the sign of 

ξ before the diagram (+ if ξ = 1 and − if ξ = −1).

Note that λ ∈ B0 (resp., λ ∈ B1/2) is uniquely determined by the weight diagram 
constructed by the above procedure.

For a diagram f we denote by f(a) the symbols at the position a (for gl(n|n) one has 
f(a) ∈ {◦, ×}). For osp(2n|2n) (resp., osp(2n + 1|2n)) a diagram has a sign if and only 
if f(0) = ◦ (resp., f(0) �= ◦). We say that two weight diagrams “have different signs” if 
one of them has sign + and another sign −.
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2.2.2.
Consider the case g �= gl(n|n). In this case each position with negative coordinate 

contains ◦ and we will not depict these positions. Each position with a positive coordinate 
contains either × or ◦. For � = 0 the zero position is occupied either by ◦ or by several 
symbols ×; we write this as ×i for i ≥ 0. Similarly, for � = 1 the zero position is occupied 

by 
×i

> with i ≥ 0.

2.2.3. Examples
For gl(3|3) the weight diagram of 0 is . . .◦◦ ×× ×◦ ◦ . . ., where the leftmost × occupies 

the zero position. The weight diagram of 0 is

×n ◦ ◦ . . . for osp(2n|2n), q2n
−×n ◦ ◦ . . . for osp(2n + 1|2n)

×n

> ◦ ◦ . . . for osp(2n + 2|2n), q2n+1.

The diagram + ◦×× corresponds to the osp(4|4)-weight λ = λ +ρ = (ε2 +δ2) +2(ε1 +
δ1). The diagram +×3 corresponds to osp(7|6)-weight λ = ε1.

The empty diagram corresponds to one of the algebras gl(0|0) = osp(0|0) = osp(1|0) =
q0 = 0; the diagram > corresponds to the weight 0 for osp(2|0) = C or for q1 (in both 
cases the corresponding simple highest weight module is one-dimensional).

2.2.4. Remark
By [8], Proposition 4.11 for λ ∈ B0 the simple OSP (2n|2n)-module is either of the 

form L(λ) if λn = 0 or L(λ) ⊕ L(λσ), where λσ is obtained from λ by changing the sign 
of ξ. Thus the simple OSP (2n|2n)-modules are in one-to-one correspondence with the 
unsigned osp(2n|2n)-diagrams.

2.3. Arch diagrams

A generalized arch diagram is the following data:

• a weight diagram f , where the symbols × at the zero position are drawn vertically 
and > (if it is present) is drawn in the bottom,

• a collection of non-intersecting arches, where each arch is
— either arc(a; b) connecting the symbol × with ◦ at the position b > a;
— or arc(0; b, b′) connecting the symbol × at the zero position with two symbols ◦

at the positions 0 < b < b′;
— for q2n+1-case arc(0; b) connecting > (at the zero position) with ◦ at the positions 

b > 0; this arch is called wobbly.4
4 Wobbly arches are important for the description of DSx(L); we will not use them in our text.
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An empty position is called free if this position is not an end of an arch; we say that 
arc(a; b) is a two-legged arch originated at a and arc(0; b, b′) is a three-legged arch origi-
nated at 0. A generalized arch diagram is called arch diagram if

• each symbol × is the left end of exactly one arch;
• for q2n+1-case the symbol > is the left end of a wobbly arch;
• there are no free positions under the arches;
• for the gl-case all arches are two-legged;
• for the osp(2n|2n), osp(2n + 1|2n)-cases the lowest × at the zero position supports a 

two-legged arch and each other symbol × at the zero position supports a three-legged 
arch;

• for the q2n+�, osp(2n + 2|2n)-cases each symbol × at the zero position supports a 
three-legged arch.

Each weight diagram f admits a unique arch diagram which we denote by Arc(f); this 
diagram can be constructed in the following way: we pass from right to left through the 
weight diagram and connect each symbol × with the next empty symbol(s) to the right 
by an arch. Examples of arch (arc) diagrams in gl(m|n) and osp-cases appear in [23], 
Sect. 4 and in [15], 8.1.3, 8.1.4. For qn-case slightly different arch (arc) diagrams were 
introduced in [19] (see 4.3.3 in [19] for pictures). The arc diagrams in [19] are obtained 
from our arch diagrams by the following procedure: a wobbly arch (if it appears) is 
substituted by two “half arcs” and each three-legged arch is substituted by two “half 
arcs”.

2.3.1. Partial order
We consider a partial order on the set of arches by saying that one arch is smaller 

than another one if the first one is “below” the second one:

arc(a; b) > arc(a′; b′) ⇐⇒ a < a′ < b

arc(0; b1, b2) > arc(a′; b′) ⇐⇒ a′ < b2,

arc(0; b1, b2) > arc(0; b′1, b′2) ⇐⇒ b2 > b′2 ⇐⇒ b1 > b′1.

2.4. Map τ

Following [22], we introduce a bijection τ between the weight diagrams for osp(2n +
2|2n) and osp(2n + 1|2n): for a osp(2n + 2|2n)-diagram f we construct τ(f) by the 
following procedure:

- we remove > and then shift all entires at the non-zero positions of f by one position 
to the left;
- we add the sign + if f(1) = × and the sign − if f(1) = ◦ and f(0) �=>.
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For instance, τ(
×
>) = −× , τ(> ×) = +× , τ(

×
> ◦×) = − ×× , τ(> ◦×) = ◦×.

One readily sees that τ is a one-to-one correspondence between weight diagrams and 
that there is a natural bijection between the arches in Arc(f) and Arc(τ(f)): the image 
of arc(a; b) is arc(a − 1; b − 1), the image of arc(0; b1, b2) is (0; b1 − 1, b2 − 1) if b1 �= 0 and 
(0; b2 − 1) if b1 = 0; this bijection preserves the partial order of the arches.

We will also denote by τ the corresponding bijection between the weight (i.e., between 
the sets B0 defined for osp(2n + 2|2n) and osp(2n + 1|2n)).

2.5. The algebras g(s)

For g = osp(2n + t|2n) we consider the chain

osp(t|0) ⊂ osp(2 + t|2) ⊂ osp(4 + t|4) ⊂ . . . ⊂ osp(2n + t|2n) = g

where osp(2p +t|2p) corresponds to the last 2p +[ t2 ] roots in Σ; we denote the subalgebra 
osp(2s + t|2s) by g(s). Note that g(0) = 0 for t = 0, 1 and g(0) = C to t = 2.

Similarly, for g = gl(n|n), qn+� we consider the chains

0 = gl(0|0) ⊂ gl(1|1) ⊂ . . . ⊂ gl(n|n) q� ⊂ q2+� ⊂ . . . ⊂ q2n+�

where for i > 0 the subalgebras gl(i|i) (resp., q2i+�) corresponds to the middle 2i + � − 1
roots in Σ; we denote the subalgebra gl(s|s) (resp., q2s+�) by g(s). It is easy to see that 
for each s there exist zs ∈ t such that gzs = g(s) + h.

2.5.1.
We retain notation of 1.8. For λ ∈ t∗ we denote by tail(λ) the maximal i such that 

λ|t(i) = 0. If ρ = 0 (i.e., for g = osp(2n|2n), osp(2n + 2|2n) and q2n+�) then tail(λ) is 
equal to the number of × at the zero position of the weight diagram (and is equal to the 
number of zeros among {λi}ni=1). The map τ defined in 2.4 preserves the function tail.

3. Multiplicities Ki(λ; ν)

We retain notation of Section 2 and set p := g(n−1) + b. The multiplicities Ki(λ; ν)
were obtained in [30], [31], [28] and [22]. Below we will describe these multiplicities in 
terms of arch diagrams. We introduce a Poincaré polynomial Kλ,ν(z) by

Kλ,ν(z) :=
∞∑
i=0

Ki(λ; ν)zi =
∞∑
i=0

[Γg,p
i (Lp(λ)) : Lg(ν)]zi

(by [29], the sum is finite). One has Kλ;ν(z) = 0 if λ ∈ B and ν /∈ B. The polynomials 
Kλ,ν(z) for λ, ν ∈ B are given in Propositions 3.2, 3.3, 3.4. Proposition 3.2 (gl-case) is a 

simple reformulation of Corollary 3.8 in [28]. Proposition 3.3 (osp-case) is a reformulation 
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of Proposition 7 in [22] (we translate the formulae from [22] to the language of arch 
diagrams). For the q-case the polynomials were described recursively by V. Serganova 
and I. Penkov in [30], [31]; in Proposition 3.4 we present non-recursive formulae, which 
are deduced from the Penkov-Serganova recursive formulae. The rest of the section is 
occupied by examples and the proof of Proposition 3.4.

3.1. Notation

Let g be a weight diagram. We denote by (g)qp the diagram which obtained from g by 
moving × from the position p to a free position q > p; such diagram is defined only if

g(p) ∈ {×i,
×i

> } for i ≥ 1 and g(q) = ◦.

For instance, for g = ×2 ◦ × one has (g)30 = × ◦ ×× and (g)20, (g)51 are not defined. If 

g(0) = ×i or 
×i

> for i > 1, we denote by (g)p,q0,0 the diagram which obtained from g by 
moving two symbols × from the zero position to free positions p and q with p < q; for 
example, (×2×)3,40,0 = ◦ × ◦ ××.

If f(p) �= ◦, we denote by arcf (p) the positions “connected with p in Arc(f)”; for 
example, arc×◦×(2) = 3, arc×◦×(0) = {1, 4} for q4 and arc×◦×(0) = {1} for osp(4|4). 
Notice that if (f)qp is defined, then arcf (p) is defined.

We always assume that λ, ν ∈ B and denote by g (resp., f) the weight diagram of λ
(resp., of ν); we sometimes write K( g

f ) instead of Kλ,ν . As in 2.2 let λ1 be the coordinate 
of the rightmost symbol × in g.

3.2. Proposition (see [28], Corollary 3.8)

Take g = gl(n|n). If Kλ,ν(z) �= 0, then g = (f)λ1
a and

Kλ,ν(z) =
{

zb−λ1 if λ1 ≤ b

0 if b < λ1

where b := arcf (a).

3.3. Proposition (see [22], Proposition 7)

Take g = osp(2n + t|2n) for t = 0, 2 and λ �= 0.

(i) If Kλ,ν(z) �= 0, then g = (f)λ1
a or g = (f)p,λ1

0,0 and f, g do not have different signs.
(ii) Let g = (f)λ1

a and f, g do not have different signs.
Set b := max arcf (a) and b− := min arcf (0) if a = 0.

If a �= 0 or a = 0 and t = 2, then Kλ,ν(z) =
{

zb−λ1 if λ1 ≤ b
0 if b < λ1.



JID:YJABR AID:19226 /FLA [m1L; v1.344] P.26 (1-44)
26 M. Gorelik / Journal of Algebra ••• (••••) •••–•••
If a = 0 and t = 0, then

Kλ,ν(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zb−−λ1 + zb−λ1 if λ1 ≤ b− < b

zb−λ1 if λ1 ≤ b− = b

zb−λ1 if b− < λ1 ≤ b

0 if b < λ1.

(iii) Let g = (f)p,λ1
0,0 . If Arc(f) contains arc(0; p, q) with λ1 ≤ q < max arcf (0), then 

Kλ,ν(z) = zq−λ1 ; otherwise Kλ,ν(z) = 0.
(iv) For λ �= 0 the polynomials Kλ,ν(z) for osp(2n + 1|2n) can be obtained from the 

polynomials for osp(2n + 2|2n) by the formula Kτ(λ),τ(ν)(z) = Kλ,ν(z).

3.3.1. Examples
(1) For λ = ε1 + δ1 and ν = 0 one has g = (f)10 with b = 2n for osp(2n + 2|2n) and 

b = 2n − 1, b− = 1 for osp(2n|2n). The polynomial Kε1+δ1,0(z) equals to 1 for 
osp(2|2), to 1 + z2n−2 for osp(2n|2n) with n > 1 and to z2n−1 for osp(2n + 2|2n).

(2) Take g = osp(4|4) with ν = ε1 + δ1. Then f = ×× so

Arc(f) = {arc(1; 2), arc(0; 3)}, arcf (1) = {2}, arcf (0) = {3}.

The non-zero values of K( g
f ) are given by the following table

g × ◦ × = (××)21 ◦ × × = (××)20 ◦ × ◦× = (××)30
K( g

f ) 1 z 1

(3) Take g = osp(6|4) with ν = ε1 + δ1. Then f =
×
> × so

Arc(f) = {arc(1; 2), arc(0; 3, 4)}, arcf (1) = {2}, arcf (0) = {3, 4}.

The non-zero values of K( g
f ) are given by the following table

g
×
> ◦× = (f)21 > ×× = (f)20 > × ◦ × > × ◦ ◦× = (f)40

K( g
f ) 1 z2 z 1

(4) Take g = osp(6|6) with ν = ε1 + δ1. Then f = ×2× so

Arc(f) = {arc(1; 2), arc(0; 3), arc(0; 4, 5)}, arcf (1) = {2}, arcf (0) = {3, 4, 5}.

The non-zero values of K( g
f ) are given by the following table

g ×2 ◦ × ××× ×× ◦× ×× ◦ ◦ × ×× ◦ ◦ ◦×
K( g ) 1 z + z3 1 + z2 z 1
f
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(5) Take g = osp(10|10) with f = ×3 ◦ ◦ ××. Then

Arc(f) = {(arc(4; 5), arc(3; 6), arc(0; 1), arc(0; 2, 7), arc(0; 9, 10)}.

For g = ×3 ◦ ◦ × ◦×, ×3 ◦ ◦ ◦ × ◦ ×, one has K( g
f ) = 1. In addition,

g × ◦ ×××× = (f)2,50,0 (f)2,60,0 × ◦ ××× ◦ ◦× = (f)2,70,0
K( g

f ) z2 z 1

For g = ×3 ◦ ◦ ◦ ×× one has K( g
f ) = z; for g = (f)i0 with i = 5, 6, . . . , 10 we have 

K( g
f ) = z10−i. Since K( g

f ) �= 0 implies λ1 > ν1 = 4 we get K( g
f ) = 0 for other values 

of g.

3.4.

Proposition. Take g = qm and λ, ν ∈ B0 or λ, ν ∈ B1/2.

(i) One has K0,0(z) = z + z2 + . . . + zm−1 and Kλ,ν(z) = 0 for ν �= 0.
(ii) If λ �= 0 and Kλ,ν(z) �= 0, then g = (f)λ1

a for a < λ1.
(iii) Let g = (f)λ1

a for a < λ1. Set b := max arcf (a).

If a �= 0, then Kλ,ν(z) =
{

zb−λ1 if λ1 ≤ b

0 if b < λ1.

If a = 0, set Af ;λ1 := {i ∈ arcf (0)| λ1 ≤ i < b}. Then

Kλ,ν(z) =
{

0 if Af ;λ1 = ∅
zi−−λ1 + zi+−λ1 otherwise

where i− := minAf ;λ1 , i+ := maxAf ;λ1 .

3.4.1. Examples
In the examples below we compute Kλ,ν(z) using Proposition 3.4.

(1) For λ = ε1 − εm and ν = 0 one has g = (f)10 with arcf (0) = {1, . . . , m} and thus 
Af ;1 = {1, . . . , m − 1}. This gives Kε1−εm,0 = 1 + zm−2 as in [30], Theorem 4.

(2) Take g = q4 and f = ××. Then

Arc(f) = {arc(1; 2); arc(0; 3, 4)}

and arcf (1) = {2}, arcf (0) = {3, 4}. This gives

g × ◦ × = (××)21 ◦ × ◦× = (××)30 ◦ × × = (××)20

K( g

f ) 1 2 2z
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and K( g
f ) = 0 for other values of g.

(3) Take f = ×2 × ◦ ◦ ×. One has arcf (0) = {3, 6, 7, 8} and

g ×× ◦ ◦ ×× = (f)50 (f)60 ×× ◦ ◦ × ◦ ◦× = (f)70 (f)54
K( g

f ) z + z2 1 + z 2 1

Since K( g
f ) = 0 implies λ1 > ν1 = 4 we get K( g

f ) = 0 for other values of g.
(4) Take f = ×2 × ◦ ◦ ◦×. One has arcf (0) = {3, 4, 7, 8} which gives

K
( (f)60

f

)
= 2z, K

( (f)70
f

)
= 2, K

( (f)65
f

)
= 1

Since K( g
f ) = 0 implies λ1 > ν1 = 5 we get K( g

f ) = 0 for other values of g.

3.5. Proof of Proposition 3.4

Theorem 4 in [30] gives (i) and establishes (ii), (iii) for m = 1 (in this case B = {0}). 
From now on we assume that m ≥ 2 and λ �= 0. We set

θ := ε1 − εm.

3.5.1. Notation
Recall that m = 2n + � and n > 0. For μ ∈ B we write μ = (μ1, . . . , μn) and set 

μ′ := μ|t(n−1) , i.e., μ′ = (μ2, . . . , μn). We will denote the weight diagram of μ by diag(μ). 
For a polynomial P ∈ Z[z] we introduce P ∈ {0, 1} by P := P (0) modulo 2; we will also 
use the following notation: 

(∑∞
i=−∞ diz

i
)
+ :=

∑∞
i=0 diz

i.

3.5.2. Formulae from [30]
Theorem 4 in [30] can be written in the following form

K
θ
2 ,ν = 0 for m = 2 Kθ,μ = δ0,μ(1 + zm−2). (18)

Theorem 3 in [30] gives for m ≥ 2, λ1 > 1 and ν �= λ − θ

Kλ,λ−θ = 1,
Kλ,ν = (z−1Kλ−θ,ν)+ for λ1 > λ2 + 1, tail(ν) ≤ tail(λ)
Kλ,ν = (z−1Kλ−θ,ν)+ + Kλ−θ,ν for λ1 > λ2 + 1, tail(ν) > tail(λ)
Kλ,ν = 0 for λ1 = λ2 + 1, ν1 �= λ2
Kλ,ν = zKλ′,ν′ for λ1 = λ2 + 1, ν1 = λ2.

(19)

3.5.3. Case λ1 ≤ 1
In this case λ = 0, θ or λ = θ

2 for m = 2 (note that θ2 /∈ P+(qm) for m > 2). For m = 2

there is no diagram f satisfying (f)ba = diag( θ2 ). If (diag(ν))ba = diag(θ), then a = 0 and 
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ν = 0, so arcdiag(ν)(0) = {1, 2, . . . , m}. Comparing this with (18) we obtain (ii), (iii) for 
the case λ1 ≤ 1.

3.5.4. Case n = 1
In this case B0 = Nθ and B1/2 = (N + 1

2 )θ for � = 0. The induction on λ1 gives 
Kλ,ν(z) = δλ−θ,ν (for λ �= 0); this gives (ii), (iii) for the case n = 1.

3.5.5.
If ν = λ − θ, then diag(λ) = (diag(ν))λ1

λ1−1 and Kλ,ν(z) = 1 by (19); thus (iii) holds 
for this case.

3.5.6.
Assume that ν �= λ − θ. Set j := λ1 − λ2 − 1 and take μ := λ − jθ (i.e., diag(μ) is 

obtained from diag(λ) by moving the rightmost × to the left “as much as possible”: for 
instance, if diag(λ) = × ◦× ◦ ◦×, then diag(μ) = × ◦××). By (19), Kλ,ν(z) �= 0 implies 
Kμ,ν(z) �= 0 which forces ν1 = μ2 (since μ1 − 1 = μ2). Hence ν1 = λ2. We obtain

Kλ,ν(z) �= 0, ν �= λ− θ =⇒ ν1 = λ2.

3.5.7.
We will prove (ii), (iii) by the induction on λ1 (note that λ1 ≥ 1

2 since λ �= 0). The 
cases λ1 ≤ 1 and n = 1 are established above. From now till the end of the proof we 
assume

n ≥ 2, λ1 > 1, ν1 = λ2, ν �= λ− θ.

Using ν1 = λ2 we write diag(λ), diag(ν) in the form

diag(λ) = g ∗ ×, diag(ν) = f ∗ ◦ (20)

where the symbols ∗ ∈ {◦, ×} occupy the position λ1 − 1 in both diagrams (note that 
f, g do not have the same meaning as in 3.1). For example,

diag(λ) = ◦ × ×× ◦ × × diag(ν) = ×××× ◦ × ◦
∗ = ×, g = ◦ × ×× ◦ f = ×××× ◦

The formulae (19) give

K( f◦×f×◦ ) = 1
K( g◦×f◦◦ ) = (z−1K( g×f◦ ))+ if tail(ν) ≤ tail(λ),
K( g◦×f◦◦ ) = (z−1K( g×f◦ ))+ + K( g×f◦ ) if tail(ν) > tail(λ),

(21)
K( g××
f×◦ ) = zK( g×f◦ ), K( g××

f◦◦ ) = 0.
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3.5.8. Proof of (ii)
Assume that Kλ,ν(z) �= 0.
If ∗ = ×, then Kλ,ν = K( g××

f×◦ ) = zK( g×f◦ ). By induction, K( g×f◦ ) �= 0 implies that 
g× = (f◦)λ1−1

a for some a, which gives g ×× = (f × ◦)λ1
a .

If ∗ = ◦, then Kλ,ν = K( g◦×f◦◦ ) �= 0. By (21), this gives K( g×f◦ ) �= 0. By induction this 
implies g× = (f◦)λ1−1

a for some a, which gives g ◦ × = (f ◦ ◦)λ1
a .

This establishes (ii).

3.5.9.
The proof of (iii) occupies 3.5.9—3.5.11. We assume that diag(λ) = (diag(ν))λ1

a and 
ν �= λ − θ. Then

diag(λ) = g ∗ × diag(ν) = f ∗ ◦ g× = (f◦)λ1−1
a . (22)

3.5.10. Case a �= 0
In this case tail(ν) = tail(λ). Take b′ := arcf (a) and b := arcf∗(a).
If ∗ = ◦, then f = f∗ and b = b′. By induction we get

K(g ◦ ×
f ◦ ◦ ) =

(
z−1K(g×

f◦ )
)
+ =

(
z−1(zb−(λ1−1))+

)
+ = (zb−λ1)+

as required. For ∗ = × one has arc(λ1 − 1; λ1) ∈ Arc(f × ◦), so b = b′ if b′ < λ1 − 1 and 
b = b′ + 2 otherwise. By induction we get

K(g ××
f × ◦ ) = zK(g×

f◦ ) = z(zb
′−(λ1−1))+ = (zb−λ1)+.

This establishes the required formula for a �= 0.

3.5.11. Case a = 0
In this case tail(ν) = tail(λ) + 1. Set

i− := minAf∗;λ1 , i+ := minAf∗;λ1 , i′− := minAf ;λ1−1, i′+ := minAf ;λ1−1

taking i± = −∞ (resp., i′± = −∞) if Af∗;λ1 = ∅ (resp., Af ;λ1−1 = ∅). By induction

K(g×
f◦ ) = zi

′
−−(λ1−1) + zi

′
+−(λ1−1).

If ∗ = ×, then i± = i′± + 2 and (21) gives

g ×× g× i −λ i −λ
K(
f × ◦ ) = zK(

f◦ ) = z − 1 + z + 1 .
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Consider the remaining case ∗ = ◦. By (21) we have

K(g ◦ ×
f ◦ ◦ ) =

(
z−1K(g×

f◦ )
)
+ + K(g×

f◦ ).

Since the coordinates of × in f are smaller than λ1 − 1, arcf (0) contains all integers 
between i′− and i′+. Thus λ1 − 1 ≤ i′− ≤ i′+ and

Af∗,λ1 = Af,λ1 = {i| i �= λ1 − 1, i′− ≤ i ≤ i′+}.

If i′− �= λ1 − 1, this gives i− = i′− and i+ = i′+ which imply

K(g ∗ ×
f ∗ ◦ ) = z−1K(g×

f◦ ) = zi−−λ1 + zi+−λ1 .

If i′− = i′+ = λ1 − 1, then Af∗,λ1 = ∅ and thus i± = −∞. One has K( g×f◦ ) = 2, so 

K( g∗×f∗◦ ) = 0 = zi−−λ1 + zi+−λ1 .
If i′− = λ1 − 1 < i′+, then i− = λ1, i+ = i′+. In this case K( g×f◦ ) = 1 + zi

′
+−(λ1−1) and 

K( g∗×f∗◦ ) = 1 + zi+−λ1 .
We see that in all cases K( g∗×f∗◦ ) = zi−−λ1 + zi+−λ1 . This completes the proof of 

(iii). �
4. The grading dex and the computation of ext(λ; ν)

In this section we introduce the Z2-grading dex and describe the graphs G(B; K0). 
Then we describe the graphs (C; ext) which were defined in Introduction.

4.1. The grading dex

Recall that � = 1 for osp(2n + 2|2n), q2n+1 and � = 0 in other cases. For λ, ν ∈ B we 
take λ1, . . . , λn as in 2.2 and introduce

||λ|| :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

λi if g �= osp(2n + 2|2n)
n∑

i=1
λi − �(n− tailλ) if g = osp(2n + 2|2n)

dex(λ) := ||λ|| mod 2 dex(λ; ν) :=
{

0 if dex(λ) = dex(ν)
1 if dex(λ) �= dex(ν)

tail(ν;λ) := tail ν − tailλ.

(23)
Observe that ||τ(λ)|| = ||λ|| for g = osp(2n + 2|2n).
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4.1.1.

Corollary. Let λ, ν ∈ B be such that Kλ,ν(z) �= 0.

(i) For g = gl(n|n) or g = q2n with B := B1/2 one has λ > ν and Kλ,ν(z) = zi, for 
some i such that i ≡ dex(λ; ν) + 1 modulo 2.

(ii) Take g = osp(2n + 2|2n), osp(2n + 1|2n) with λ �= 0. Then λ > ν, tail(ν; λ) ∈
{0, 1, 2}, and Kλ,ν(z) = zi for some i such that i ≡ dex(λ; ν) + 1.

(iii) Take g = osp(2n|2n) with λ �= 0. Then λ > ν and tail(ν; λ) ∈ {0, 1, 2}. If 
tail(ν; λ) �= 1, then Kλ,ν(z) = zi; if tail(ν; λ) = 1, then Kλ,ν(z) equals to zi or 
to zi + zj for some i, j such that j < i and j ≡ i modulo 2. In both cases i satisfies 
i ≡ dex(λ; ν) + 1.

(iv) Take g = q2n+� with λ �= 0. Then λ > ν and tail(ν; λ) ∈ {0, 1}.
If tail(ν; λ) = 0, then Kλ,ν(z) = zi for some i such that i ≡ dex(λ; ν) + 1.
If tail(ν; λ) = 1, then Kλ,ν(z) = zi + zj for some i, j such that j ≤ i and i ≡
dex(λ; ν) + 1 + �.

Proof. By Proposition 3.3 (iv) we can assume g �= osp(2n + 1|2n). Theorems 3.2–3.4
immediately imply all assertions except i ≡ dex(λ; ν) + 1 modulo 2 and j ≡ i modulo 2
for osp(2n|2n). We retain notation of 3.2–3.4. Recall that Kλ,ν(z) �= 0 implies g = (f)λ1

a

or g = osp(2n + t|2n) and g = (f)p,λ1
0,0 .

Consider the case g = (f)λ1
a . In this case

dex(λ; ν) ≡
{

λ1 − a if a �= 0 or g �= osp(2n + 2|2n), q2n+1
λ1 − a + 1 if a = 0 and g = osp(2n + 2|2n), q2n+1.

Consider the case when g �= q2n+� or a �= 0. In this case i = b − λ1, where b =
max arcf (a). Observe that b − a is odd except for the case when g = osp(2n + 2|2n) and 
a = 0; in the latter case b − a is even. Hence i ≡ dex(λ; ν) + 1 if g = q2n+� or a �= 0. For 
osp(2n|2n) with a = 0 one has j = b− − λ1, where b− = min arcf (0) is odd; this gives 
j ≡ dex(λ; ν) + 1.

Consider the case g = q2n+� with a = 0. One has Kλ,ν(z) = zi−−λ1 + zi+−λ1 , where 
i− ≤ i+ = max{s ∈ arcf (0)| λ1 ≤ s < max arcf (0)}. Observe that i+ ≡ � + 1, so 
i+ − λ1 ≡ dex(λ; ν) + 1 + � as required.

For the remaining case g = osp(2n + t|2n) and g = (f)p,λ1
0,0 one has dex(λ; ν) ≡ p + λ1

modulo 2. In this case i = q − λ1, where arc(0; p, q) is a three-legged arch in Arc(f). 
Since q − p is odd, this implies i ≡ dex(λ; ν) + 1. This completes the proof. �
4.1.2. Remark

The coefficients of the character formulae obtained in [22], [35], [16] can be expressed 

in terms of the values Kλ,ν(−1). By above, if Kλ,ν(−1) �= 0, then
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(−1)dex(λ;ν)+1Kλ,ν(−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for gl(n|n), osp(2n + 1|2n), osp(2n + 2|2n)
1 for osp(2n|2n), q2n+� if tail(ν;λ) �= 1
1 or 2 for osp(2n|2n) if tail(ν;λ) = 1
(−2)� for q2n+� if tail(ν;λ) = 1.

4.2. Example

For n = 1 the polynomials Kλ,ν can be presented by the following graphs where the 
arrows stand for Kλ,ν �= 0 and the solid arrows for Kλ,ν(0), so the solid arrows constitute 
the graph G(B; K0). If Kλ;ν(z) is not a constant polynomial, we write Kλ;ν(z) near the 
corresponding arrow. Using Remark 2.2.4 we obtain

gl(1|1) : . . . −β 0 β 2β . . .

osp(2|2) : . . . βσ 0 β 2β . . .

OSP (2|2) : 0 β 2β . . .

osp(4|2) : 0

z

2β 3β . . .

β

q2,B1/2 : 0 θ
2

3θ
2

5θ
2 . . .

q2,B0 : 0 θ 2θ 3θ . . .

q3,B0 : 0

1+z

2θ 3θ . . .

θ

For g �= osp(4|2) the grading dex is given by dex(iβ) ≡ i, dex(iβ′) ≡ i, dex(iθ) ≡ i; 

for osp(4|2) one has dex(iβ) ≡ i − 1 + δi0.
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4.3. Polynomials K̂λ,ν(z; w)

Retain notation of 1.6, 1.8 and 2.5. Substituting g by g(s) we obtain the functors 
Γg(s),p(s)
• which satisfy the assumptions (A), (B) of 1.8.1. The formulae for Ki

(s)(λ; ν) can 
be obtained from the formulae for Ki(λ; ν) by changing λ1 to λs and m to s in qm-case. 
We set

K̂λ,ν(z;w) :=
k∑

i=1

∞∑
j=0

Kj
(i)(λ; ν)ziwj . (24)

Using 3.2–3.4 we obtain K̂λ,λ(z, w) = 0 for any λ ∈ B with tailλ = 0 (for gl(n|n) this 
holds for any λ ∈ B).

4.3.1.

Corollary. Take λ ∈ B.

(i) For g = gl(n|n) and q2n+� one has

K̂λ,ν(z, w) �= 0 =⇒ λ ≥ ν & ν ∈ B.

(ii) For osp(2n + t|2n) one has

K̂λ,ν(z, w) �= 0 & λ ≥ ν =⇒ ν ∈ B.

Proof. Assume that K̂λ,ν(z; w) �= 0 for some ν �= λ; for osp(2n + t|2n) we assume, in 
addition, λ > ν.

Since K̂λ,ν(z; w) �= 0 one has Kj
(s)(λ; ν) �= 0 for some j, s. Set λ′ := λ|t(s) , ν′ := ν|t(s)

and let B′ ⊂ P+(g(s)) be the analogue of the set B for g(s). Note that λ′ ∈ B′. By above,

(a) Kj(λ′; ν′) = Kj
(s)(λ; ν) �= 0

which implies

(b) ν′ ∈ P+(g(s)) and ν|t⊥(s) = λ|t⊥(s) .

In particular, ν′ �= λ′ (since ν �= λ and ν|t⊥(s) = λ|t⊥(s)). In the osp-case combining (b) 
and ν < λ we obtain ν′ < λ′; since 0 is the minimal element in P+(osp(2s + t|2s)) this 
implies λ′ �= 0. We conclude that Kj(λ′; ν′) is given by 3.2– 3.4 (since λ′ �= 0 for the 
osp-case). Using 3.2– 3.4 we deduce from (a)
(c) ν′ ∈ B′ and ν′ < λ′
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for all cases. Combining ν′ < λ′ with (b) we obtain λ > ν for gl(n|n) and q2n+�.
Let us show that ν ∈ B. Combining (b) and (c) we conclude that ν+ρ can be written 

in the form appeared in 2.2. Moreover 3.2– 3.4 give

(d) νn+1−s < λn+1−s

Combining (b) and (c) we conclude that νis are integral (resp., non-negative integral, in 
N + 1/2) for g = gl(n|n) (resp., for B0 with g �= gl(n|n), for B1/2). By (b)

νi = λi for 1 ≤ i ≤ n− s. (25)

Since λ ∈ B one has λn+1−s ≤ λn−s = νn−s; using (d) we get

νn+1−s < νn−s. (26)

For gl(n|n)-case and for q2n with B1/2 combining (c), (25), (26) and the condition λ ∈ B
we get νi < νi+1 for each i. For other cases we get either νi ≤ νi+1 or νi = νi+1 = 0 for 
each i. This implies ν ∈ B. �
4.3.2. Example

The following example shows that K̂λ,ν(z, w) �= 0 does not imply λ ≥ ν or ν ∈ B in 
osp-case. By [13], K0,ε1(z) = z for osp(3|2); this implies K̂0,ε2 = zw for osp(5|4) whereas 
0 < ε2 and ε2 /∈ P+(osp(5|4)) (and so ε2 /∈ B).

4.3.3.

Corollary. Take λ �= ν ∈ B and set s := n + 1 − max{i| λi �= νi}.

(i) Take g = gl(n|n), q2n+�. If K̂λ,ν(z; w) �= 0, then

K̂λ,ν(z;w) =

⎧⎪⎨
⎪⎩

ziws for gl(n|n)
ziws for q2n+� if tailλ = tail ν
(zi + zj)ws for q2n+� if tailλ �= tail ν

with 0 ≤ j ≤ i in the last case.
(ii) Take g = osp(2n + t|2n). If K̂λ,ν(z; w) �= 0 and tail(λ) ≤ tail(ν), then

K̂λ,ν(z;w) =

⎧⎪⎨
⎪⎩

ziws for osp(2n + 1|2n), osp(2n + 2|2n)
ziws for osp(2n|2n) if tailλ = tail ν
ziws or (zi + zi−2i′)ws for osp(2n|2n) if tailλ �= tail ν
with 0 ≤ i − 2i′ < i in the last case.
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In all cases i ≡ dex(λ) − dex(ν) + 1 modulo 2.

Proof. The formulae in 3.2, 3.4 give (i). For (ii) take λ′, ν′ as in the proof of Corol-
lary 4.3.1. The conditions λ �= ν and tail(λ) ≤ tail(ν) imply λ′ �= ν′ and tail(λ′) ≤ tail(ν′)
which force λ′ �= 0. Therefore Ki

(s)(λ; ν) = Ki(λ′; ν′) is given by 3.3; this gives (ii). �
4.4. Graph G(B; K0)

Retain notation of 1.9.1. By 4.3.1, if ν → λ is an edge in G(t∗, K0) with λ ∈ B, then 
ν ∈ B. In other words, B(λ) ⊂ B for each λ ∈ B. Using 3.2– 3.4 we obtain the following 
description for G(B; K0).

4.4.1. Case gl(n|n)
In this case ν �→ λ is an edge in G(B; K0) if and only if the diagram of λ is obtained 

from the diagram of ν by moving one symbol × along the arch originated at this symbol. 
Each vertex has exactly n direct successors.

4.4.2. Case q2n with B = B1/2
In this case ν �→ λ is an edge in G(B; K0) if and only if the diagram of λ is obtained 

from the diagram of ν by moving one symbol × along the arch originated at this symbol. 
Each vertex has exactly n direct successors.

4.4.3. Case osp(2n + t|2n)
The map τ gives an isomorphism between the graphs G(B; K0) for t = 1 and t = 2. 

For t = 0, 2 an edge ν �→ λ appears in G(B; K0) if and only if the diagram of λ is 
obtained from the diagram of ν by one of the following operations:

• moving one symbol × from the zero position to the farthest position connected to 
the zero position;

• moving one symbol × along the two-legged arch originated at this symbol

and, for t = 0, the diagrams of λ and ν do not have different signs (for t = 2 the diagrams 
do not have signs). As a result, for t = 1, 2 each vertex has exactly n direct successors; 
for t = 0 this holds for the vertices ν with tail ν = 0 (observe that for n = 1 the vertex 
0 has two direct successors δ1 ± ε1).

4.4.4. Case q2n+� with B = B0
Let arc(0; b′, b) be the maximal three-legged arch in Arc(ν). By 3.4, ν �→ λ is an edge 

in G(B; K0) if and only if the diagram of λ is obtained from the diagram of ν by moving 
one symbol × from a position a to a free position a′ connected with a subject to the 
condition a′ �= b; the edge ν �→ λ is simple if a′ �= b′ and is double if a′ = b′. Note that 

the number of three-legged arches in Arc(ν) is equal to tail ν. We conclude that each 
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vertex ν is the origin of n + tail ν edges with no double edges if tail ν = 0 and a unique 
double edge if tail ν > 0.

4.4.5.

Corollary.

(i) For the cases g = gl(n|n), osp(2n +t|2n) with B = B0 and for g = q2n with B = B1/2
the map dex gives a bipartition of G(B; K0).

(ii) The graph does not have multiedges except for the case (q2n+�, B0) where the double 
edges appear.

4.4.6.
Fix p ∈ Z for g = gl(n|n), p ∈ N − 1/2 for B1/2 and p ∈ N for other cases. We set

B>p = {λ ∈ B| λn > p}, B+ := {μ ∈ Nn| μ1 > μ2 > . . . > μn > 0}

and identify B>p with B+ via the map μ �→ (μ1 − p; μ2 − p; . . . ; μn − p). Note that the 
weight diagram of μ ∈ B+ contains ◦ or × in each position and the corresponding arch 
diagram “does not depend on the type of g”. By 3.2– 3.4 for ν, λ ∈ B>p the polynomials 
K̂λ,ν(z; w) are the same for all types of g and B (for fixed n). In particular, the induced 
subgraphs (B>p; K0) are isomorphic for all types of g and B.

Notice that B>−1/2 = B1/2 so for each p the graph (B>p; K0) is isomorphic to 
(B1/2; K0).

4.5. Graph (B; ext)

Recall that ext(λ; ν) = ext(ν; λ) and ext(λ; ν) = 0 if λ ∈ B, ν /∈ B. Retain notation 
of 1.9. One has

s(λ; ν) = n + 1 − max{i| λi = νi}.

By Corollary 4.3.3, each pair (λ; ν) with λ �= ν is Ki-stable for any i.
The following corollary describes the graph (B; ext) for (g, B) �= (q2n+�, B0) and gives 

some information for the case (q2n+�, B0).

4.5.1.

Corollary. Take λ ∈ B and ν ∈ B with ν < λ.

(i) If (g, B) �= (q2n+�, B0), then ext(λ; ν) = k0(λ; ν) ≤ 1. The module Γg,pLp(λ) has a 
semisimple radical.
(ii) If (g, B) �= (q2n+�, B0), then dex is a bipartition of the graph (B; ext).
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(iii) If (g, B) = (q2n+�, B0), then ext(λ; ν) ≤ k0(λ; ν). If λn > 1 + �, then
— ext(λ; ν) = k0(λ; ν) ≤ 1;
— k0(λ; ν) �= 0 implies dex(ν) �= dex(λ);
— the module Γg,pLp(λ) as a semisimple radical.

Proof. For g �= q2n+� one has h = t and ext(λ; λ) = 0; for q2n one has ext(λ; λ) = 0 for 
any λ ∈ B1/2. Combining Corollaries 1.9.3 and 4.4.5 we obtain (i), (ii) and the inequality 
ext(λ; ν) ≤ k0(λ; ν) in (iii). Take (g, B) = (q2n+�, B0). The assumption λn > 1 + � gives 
B(λ) ⊂ B>0 (see 4.4.6 for notation). By 4.4.6 the map dex is a bipartition of the graph 
G(B(λ), K0) and k0(λ; ν) = 1 for each ν ∈ B(λ). Using Corollary 1.9.3 we obtain all 
assertions of (iii). �
4.5.2. Example

For n = 1 the graphs G(B; K0) are given in 4.2. The corresponding ext-graphs, A∞
∞ for 

gl(1|1), osp(2|2), D∞ for osp(4|2) and A∞ for the rest of the cases, appear in Introduction. 
In agreement with Corollary 4.5.1 (i) for (g, B) �= (qm, B0) the ext-graph can be obtained 
form G(B; K0) by erasing the dotted arrows and changing −→ to ←→; in this case dex
is the bipartition of the ext-graph. In the remaining cases (for n = 1) the ext-graphs are

q2,B0 : 0 θ 2θ 3θ . . .

q3,B0 : θ 0 2θ 3θ . . .

see [27], [21]. Combining 4.2 and 4.5.2, we conclude that for q2 the radical of Γg,pLp(θ) is 
an indecomposable isotypical module of length two with the cosocle isomorphic to Lg(0), 
and for q3 the radical of Γg,pLp(2θ) is a module of length three with the subquotients 
isomorphic to Lg(0), Lg(0), Lg(θ) and the cosocle isomorphic to Lg(0).

4.5.3. Remark
Take g = q2n+1 and λ ∈ B0 such that λn = 1 and λn−1 > 4. Let us show that 

conclusions of Corollary 4.5.1 (iii) hold for such λ. Take μ such that k0(λ; μ) �= 0. Since 

diag λ => × ◦◦ ◦g for some diagram g one has diagμ =
×
> ◦ ◦◦ ◦g or diagμ => × ◦◦ ◦f

with g = (f)ba. In both cases k0(λ; μ) = 1 and dex(μ) �= dex(λ). Hence G(B(λ); K0)
is bipartite, Γg,pLp(λ) has a semisimple radical and Corollary 1.9.3 gives ext(λ; ν) =
k0(λ; ν).

4.5.4. Remark
Fix p ∈ Z for g = gl(n|n), p ∈ N − 1/2 for B1/2 and p ∈ N for osp(2n + t|2n), 

p ∈ N>� for (q2n+�, B0). Retain notation of 4.4.6. By Corollary 4.5.1 ext(λ; ν) = k0(λ; ν)
for each λ, ν ∈ B>p with λ > ν. In the light of 4.4.6, for λ �= ν the value ext(λ; ν) does 

not depend on g and p (under the identification of B>p with B+). Let C+ be the Serre 
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subcategory5 of Fin(g) generated by L(λ) with λ ∈ B>p. By above, the graphs (C+; ext)
are naturally isomorphic for all g with p as above. For gl(n|n) and osp(2n + t|2n) this 
implies the isomorphisms between Ext1-graphs of C+ (in these cases Ext1-graphs of C+
have two connected components which differ by Π).

4.6. Proof of Theorem A

Let g̃ be one of the algebras gl(m|n), osp(M |2n) or qm. We will say that weights λ, ν ∈
P+(g̃) have the same central character if L(λ), L(μ) have the same central character. 
The computation of ext(λ; ν) for arbitary λ, ν ∈ P+(g̃) can be reduced to the case 
λ, ν ∈ B with the help of translation functors which map a simple module in a given 
block to an isotypical semisimple module in another block of the same atypicality. For 
g̃ �= qm, these semisimple modules are simple and, by [22], each block of atypicality k
in Fin(gl(m|n)) (resp., in Fin(osp(M |2n)) is equivalent to the principal block in gl(k|k)
(resp., in osp(2k + t|2k)). In particular, if L(μ), L(ν) have the same central character, 
then ext(μ; ν) = ext(μ; ν), where μ, ν are the corresponding weights in B (ν is described 
in [22], Section 6). This gives Theorem A for g = gl(m|n), osp(M |2n) and describes the 
graph (Fin(g); ext) in these cases.

For qm-case the situation is more complicated, see [33].

4.6.1. Weight diagrams for qm
For μ =

∑m
i=1 aiεi denote by core(μ) the set obtained from {ai}mi=1 by deleting the 

maximal number of pairs satisfying ai + aj = 0; for example, for m = 8 core(2ε1 + ε2 −
ε8) = {2; 0}. From the description of the center of U(qm) obtained in [34], it follows 
that L(λ), L(μ) have the same central character if and only if core(λ) = core(μ). We set 
�(λ) := 0 if 0 /∈ core(λ) and �(λ) := 1 otherwise.

The weight diagram for μ =
∑m

i=1 aiεi ∈ P+(qM ) is constructed by the following 
procedure: we put > (resp., <) to the pth position if ai = p (resp., ai = −p) for some 
i, add ◦ to all empty positions and then glue each pair >, < and each pair >, > (which 
could occur only at the zero position) to one symbol ×. For instance

μ = ε1 − ε3 − 3ε4 ν = 3ε1 − ε4 λ = 4ε1 + 2ε2 − ε3 − 2ε4
diagμ => ×◦ < diag ν = × < ◦ > diag λ = ◦ < × > .

If μ ∈ B the resulting diagram coincides with the diagram constructed in 2.2.1.
The symbols >, < are called core symbols. By above, λ, μ have the same central char-

acter if and only if all core symbols in their diagrams occupy the same positions (for 
instance, in the above example ν and λ have the same central character).

In this paper we define the atypicality of the weight to be the number of × in the 
diagram. By contrast, in [20] the atypicality of the weight is defined as the number of 

5 by Serre subcategory generated by a set of simple modules we mean the full subcategory consisting of 

the modules of finite length whose all simple subquotients lie in a given set.
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× in the diagram if the diagram does not have > at the zero position and is equal to 
the number of × plus 1

2 if the diagram has > at the zero position. In [20] the symbol >
at the zero position is not considered as a core symbol; note that for this definition it is 
still true that λ, μ have the same central character if and only if all core symbols in their 
diagrams occupy the same positions.

Let η ∈ P+(qM ) be a weight of atypicality n > 0. We denote by η the weight in 
P+(q2n+�) with the weight diagram which is obtained from diag η by erasing all core 
symbols at the non-zero positions. For the above example we have

diagμ => × diag ν = × diag λ = ◦×
μ = ε1 − ε3 ν = 0 λ = ε1 − ε2.

Note that η ∈ B0 if η is integral and η ∈ B1/2 if η is half-integral (for example, the weight 
η = 3

2ε1 − 1
2ε2 − 3

2ε3 has the diagram > ×, so diag η = × and η = 1
2ε1 − 1

2ε2).

4.6.2.

Proposition. For any η, ζ ∈ P+(qm) one has ext(η; ζ) = ext(η, ζ) if η, ζ have the same 
central character.

4.6.3. Outline of the proof
Take g̃ = qm with a triangular decomposition g̃ = ñ+ ⊕ h̃⊕ ñ−. A weight μ ∈ P+(g̃)

is called stable if all symbols × precede all core symbols with non-zero coordinates (in 
the above example μ, ν are stable weights and λ is not stable).

Let η be a stable weight of atypicality n. Then g̃ contains a subalgebra g ∼= q2n+�(η)
with a compatible triangular decomposition such that the restriction of η to the Cartan 
subalgebra of g0 equal to η (in the above example, for μ one has g ∼= q3 corresponding 
to ε1, ε2, ε3 and for ν one has g ∼= q2 corresponding to ε2, ε3). By [31], Corollary 1 for 
p := g + b̃ one has Γg̃,p

0 Lp(η) = Lg̃(η) and Γg̃,p
i Lp(η) = 0 for i > 0. Combining 1.5, 1.7.3

and 1.4.3 we obtain ext(η; ζ) = ext(η; ζ) if η, ζ are stable weights with the same central 
character.

The general case can be reduced to the stable case with the help of translation functors 
described in [2]. A translation functor which preserves the degree of atypicality and the 
value of �(η) transforms L(η) to L(η′) ⊕ΠL(η′), where diag η′ is obtained from diag η by 
permuting two neighboring symbols at non-zero positions if exactly one of these symbols 
is a core symbol: for instance, for λ as above we can obtain λ′s with the diagrams 
◦ <> × and ◦× <> (the last diagram is stable). Note that η = η′. Using these functors
we can transform any two simple modules L(η), L(ζ) with the same central character 
to the modules L(η′)⊕r ⊕ΠL(η′)⊕r, L(ζ ′)⊕r ⊕ΠL(ζ ′)⊕r, where η′, ζ ′ are stable weights 
with the same central character and η = η′, ζ = ζ

′ (the diagrams of η′ and ζ ′ are 
stable diagrams obtained from the diagrams of η and ζ by moving all core symbols 

from the non-zero position “far enough” to the right). It is not hard to show that these 
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functors map a module from N (η; ζ; m) to a module of the form M ⊕ ΠM , where M is 
a direct sum of r modules from N (η′, ζ ′; m). This gives ext(η; ζ) ≤ ext(η′; ζ ′). Using the 
same set of functors we can transform L(η′), L(ζ ′) to the modules L(η)⊕r ⊕ ΠL(η)⊕r, 
L(ζ)⊕r ⊕ ΠL(ζ)⊕r; this implies ext(η′; ζ ′) ≤ ext(η; ζ). Since η′, ζ ′ are stable we obtain 
ext(η; ζ) = ext(η′; ζ ′) = ext(η; ζ) as required. �
4.6.4.

The arch diagrams for an arbitrary λ ∈ P+(qM ) are constructed in the same way as 
the arch diagrams for λ ∈ B: starting from the rightmost symbol × in the weight diagram 
diag(λ) we connect each symbol × at the non-zero position with the next free symbol ◦, 
then each symbol × at the zero position with the next two free symbols ◦ and then add 
wobbly arch if there is > at the zero position. There is a natural bijection between the 
arches in Arc(λ) and Arc(λ).

4.6.5.

Corollary. For λ > ν ∈ P+(qm) one has

(i) ext(λ; ν) ≤ 2;
(ii) if ext(λ; ν) �= 0, then diag λ can be obtained from diag ν by moving one symbol ×

along the arch in Arc(ν);
(iii) if diag λ does not have × at the position 0, 1, 1 +�(λ), then ext(λ; ν) = 1 if diag λ can 

be obtained from diag ν by moving one symbol × along the arch and ext(λ; ν) = 0
otherwise.

4.6.6.
The above Corollary implies Theorem A for qm and gives a description of the graph 

(Fin(qm)1/2, exp), where Fin(qm)1/2 is the full subcategory consisting of the modules 
with half-integral weights. Note that dex(λ) is a bipartition of this graph.

By above, extq3(2θ, θ) = 0, so the converse of (ii) does not hold (in this case diag 2θ =>

×, so × occurs at the position 1 + �(2θ) = 2).

4.7. Properties (Dex1), (Dex2)

Consider the case g = gl(m|n), osp(M |2n). The map dex(λ) is a bipartition of the 
graph (Fin(g); exp). The map Irr(Fin(g)) → Z2 given by L(λ), ΠL(λ) �→ dex(λ) satisfies 
(Dex1), but does not satisfy (Dex2). A map satisfying (Dex1) and (Dex2) can be con-
structed using a certain decomposition Fin(g) = F ⊕ ΠF (for atypical modules N we 
take N ∈ F if Ni =

∑
μ:p(μ)=i Nμ, where p(μ) is given by p(εi) = 0, p(δj) = 1). Taking 

dex(L(λ)) := dex(λ) for L(λ) ∈ F and dex(L(λ)) := dex(λ) +1 for L(λ) ∈ ΠF we obtain 

a map satisfying (Dex1) and (Dex2), see [24], [15] for details.
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For the case (q; 12) the map dex(λ) is a bipartition of the graph (Fin(qm)1/2; exp)
(where Fin(g)1/2 is the full subcategory of Fin(qm) consisting of the modules with half-
integral weights); the map Irr(Fin(qm)1/2) → Z2 given by L(λ), ΠL(λ) �→ dex(λ) satisfies 
(Dex1).

In the remaining case (q; C) we have g := qm and C is the Serre subcategory generated 
by L(λ), ΠL(λ) with λ satisfying the assumption of Corollary 4.6.5 (iii). By above, dex(λ)
is a bipartition of the graph (C; exp) and the map Irr(C) → Z2 given by L(λ), ΠL(λ) �→
dex(λ) satisfies (Dex1).

4.8. Remark

If C is a full Π-invariant subcategory of O(g) and g is a Kac-Moody superalgebra, then 
the Ext1-graph of C is a disjoint union of two copies of the graph (C; ext). In particular, 
if ext-graphs of C ⊂ O(g) and C′ ⊂ O(g′) are isomorphic, then Ext1-graphs of C and C′

are isomorphic, see examples in 4.5.4. This does not hold for qm: for instance, the half-
integral principal block in Fin(q2) and the integral principal blocks in Fin(q2), Fin(q3)
have isomorphic ext-graphs and different Ext1-graphs (see [27], [21]).

4.8.1.
Take g = qm. Fix a central character χ and let Cχ be the corresponding Serre subcat-

egory of Fin(qm). We assume that Cχ �= 0 and denote by (Cχ, Ext1) the Ext1-graph of 
Cχ.

By above, the set core(λ) is the same for all L(λ) ∈ Cχ. We denote this set by core(χ). 
We say that χ is Π-invariant if core(χ) \{0} contains an odd number of elements; in this 
case each L(λ) ∈ Cχ is Π -invariant. If χ is not Π-invariant, then each L(λ) ∈ Cχ is not 
Π -invariant.

We say that χ is integral (resp., half-integral) if core(χ) contains an integral (half-
integral) number. If χ �= χ0 is atypical, then χ is either integral or half-integral and 
the graph (Cχ; ext) is connected. If χ = χ0 and m is even, the graph (Cχ; ext) has two 
connected components (B0; ext) and (B1/2; ext).

If χ is Π-invariant, the graph (Cχ, Ext1) can be obtained from (Cχ; ext) by adding 
the loops around each vertex λ with 0 ∈ {λi}mi=1, see [21], Theorem 3.1. In particular, 
(Cχ, Ext1) = (Cχ; ext) if χ is Π-invariant and half-integral.

Consider the case when χ is not Π-invariant. The vertices of (Cχ; Ext1) are of the 
forms (ν; i), where ν ∈ Cχ, i ∈ Z2. By Theorem 3.1 in [21] the graph (Cχ; Ext1) does 
not have loops and the vertices (ν, i), (ν, i + 1) are connected by a unique edge ←→ if 
0 ∈ {λi}mi=1; otherwise these vertices are not connected. Consider the edges of the form 
(ν, i) ↔ (λ, j). Each edge ν ↔ λ corresponds to fours edges (ν, 0) ↔ (λ, j), (λ, j) ↔ (ν, i)
and (ν, 1) ↔ (λ, j + 1), (λ, j + 1) ↔ (ν, i + 1) for some i, j. By [11],
dim Ext1(L(λ), L(ν)) = dim Ext1(L(ν),Πtail(λ;ν)L(λ))
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which implies i = 0 if tail(λ; ν) is even and i = 1 if tail(λ; ν) is odd. In particular, if χ is 
not Π-invariant and half-integral, then in the graph (Cχ; Ext1) the vertices (ν, i), (ν, i +1)
are not connected and all edges are of the form ←→.

Unfortunately, the above information is not sufficient for a description of (Cχ; Ext1) for 
atypicality greater than one (the graphs for atypicality one were described in [27], [21]).
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